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Abstract

No-wait flow shop production has been widely applied in manufacturing. How-

ever, minimization of total completion time for no-wait flow shop production

is NP -complete. Consequently, achieving good effectiveness and efficiency is a

challenge in no-wait flow shop scheduling, where effectiveness means the devia-

tion from optimal solutions and efficiency means the computational complexity

or computation time. We propose a current and future idle time (CFI) construc-

tive heuristic for no-wait flow shop scheduling to minimize total completion time.

To improve effectiveness, we take current idle times and future idle times into

consideration and use the insertion and neighborhood exchanging techniques.

To improve efficiency, we introduce an objective increment method and deter-

mine the number of iterations to reduce the computation time. Compared with

three recently developed heuristics, our CFI heuristic can achieve greater ef-

fectiveness in less computation time based on Taillard′s benchmarks and 600

randomly generated instances. Moreover, using our CFI heuristic for operating

room (OR) scheduling, we decrease the average patient flow times by 11.2%

over historical ones in University of Kentucky Health Care (UKHC).
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1. Introduction

No-wait flow shop production is essential for many processes in manufactur-

ing, such as steel rolling (Aldowaisan and Allahverdi, 2003), metal (Framinan

and Nagano, 2008) and food processing (Ye et al., 2016). In these manufacturing

processes, all n jobs are processed in the same order on each of m machines, and5

there should be no waiting time between any two operations until the process is

finished. Therefore, the start time on the first machine could be delayed to avoid

waiting times during the process. For operating room (OR) scheduling across

the three-stage perioperative (periop) process in healthcare systems, patients

are also not supposed to wait during the process, especially from ORs in the10

intraoperative (intraop) stage after the surgery to the postoperative (postop)

stage for recovery. Waiting between any stages across the periop process increas-

es patient flow times and generates unnecessary cost. For more details about

applications of no-wait flow shop production, please see Hall and Sriskandarajah

(1996).15

Total completion time (TCT) is defined as the sum of completion times of all

jobs on the last machine. Minimization of total completion time, min(TCT), is

the same as to minimize the average flow time of products in manufacturing, or

to smooth the flow of customers in services (Shyu et al., 2004). Other objectives

to optimize the performance of no-wait flow shop production are correlated to20

minimization of total completion time, such as minimization of maximum com-

pletion time or makespan (Lin and Ying, 2016; Grabowski and Pempera, 2005),

minimization of total tardiness (Ding et al., 2015), minimization of makespan

and total completion time (Laha and Gupta, 2016), and minimization of weight-

ed mean completion time and weighted mean tardiness (Tavakkoli-Moghaddam25

et al., 2007).

No-wait flow shop production to minimize total completion time can be

written as Fm |nwt |
∑
Cj , where Fm is for a flow shop problem with m ma-

chines, nwt for the constraint of no-wait, and
∑
Cj for the objective to minimize

total completion time (Graham et al., 1979). Fm |nwt |
∑
Cj problems are N-30
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P -complete when the number of machines is larger than or equal to two (Röck,

1984). Due to the NP -completeness for Fm |nwt |
∑
Cj problems, it is extreme-

ly time consuming to seek optimal solutions by using exact methods even for

moderate-scale problems. Therefore, it is practical to seek near-optimal solu-

tions by using heuristics, especially for large-scale problems. Effectiveness and35

efficiency should be used to evaluate heuristics, where effectiveness means the

deviation from the optimum, and efficiency means the computational complex-

ity or computation time (Li et al., 2011a). Currently, few heuristics are both

effective and efficient.

To achieve greater effectiveness in less computation time, we propose a40

current and future idle (CFI) constructive heuristic for no-wait flow shop to

min(TCT). The basis of our study is that current and future idle times should

be treated differently as introduced in Li et al. (2011b). Consequently, in the

initial sequence, we assign higher weights to current idle times generated by jobs

in the head of a sequence than those generated by jobs in the tail of the sequence.45

This initial sequence improves effectiveness of our CFI heuristic. To improve

efficiency of our CFI heuristic, we introduce an objective increment method,

integrated with the neighborhood exchanging technique. In this method, we

calculate the increment of TCT after a pair of jobs in the sequence are ex-

changed, instead of calculating TCT for the whole sequence after neighborhood50

exchanging.

The remainder of this paper is organized as follows. Section 2 provides lit-

erature review of Fm |nwt |
∑
Cj problems, including discussion of three typical

heuristics: PH1(p), FNM and LS heuristics. Section 3 presents our proposed

CFI heuristic. Section 4 discusses the computational results based on a large55

number of instances of various sizes. Section 5 presents the results of case study

based on historical data from University of Kentucky Health Care (UKHC).

And finally, section 6 draws conclusions and proposes future work.
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2. Literature review

This section provides a limited review of no-wait flow shop production to60

minimize total completion time, as the literature on Fm |nwt |
∑
Cj problems is

vast. We firstly define Fm |nwt |
∑
Cj problems with notation and formulations,

secondly describe the current status of heuristics for Fm |nwt |
∑
Cj problems

in the literature, and finally we illustrate three heuristics that are typical and

recently developed.65

2.1. Problem description

For n-job m-machine Fm |nwt |
∑
Cj problems, we use the following nota-

tion.
n: the number of jobs; 

m: the number of machines; 

π: a sequence of n jobs, π = [J1, J2, …, Jj-1, Jj, …, Jn]; 

pj,i: the processing time of job j on machine i, where j=1,…,n and i=1,…,m; 

Cj,i: the completion time of job j on machine i; 

dj-1,j:  the distance between the completion times of two adjacent jobs on the last machine. 

 

 

 

The following assumptions are used for no-wait flow shop scheduling (Ying70

et al., 2016). The processing time of job j on machine i, pj,i, is deterministic.

The set-up times are included in the processing times, and the transportation

times between machines are negligible. In addition, all jobs are available to be

processed at time zero on the first machine, each job can only be processed once

and only once on each machine, each machine can processes only one job at a75

time, and there is no machine breakdown. Once a job starts to be processed, it

cannot be interrupted before completion, which means no preemption. Based

on these assumptions, our objective is to find a sequence of jobs that minimizes

total completion time.

The completion time of job j on machine i (Cj,i) can be calculated by Eq.80

(1) (Ye et al., 2016; Li et al., 2008):

Cj,i = Cj−1,m +

i∑
k=1

pj,k − min
i=1,...,m

( i−1∑
k=1

pj,k +

m∑
k=i+1

pj−1,k

)
, (1)
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where
∑0
k=1 pj,k = 0 and

∑m
k=m+1 pj,k = 0. The distance between the comple-

tion times of two adjacent jobs on the last machine (dj−1,j) can be calculated

by Eq. (2):

dij−1,j = Cj,m − Cj−1,m =

m∑
k=1

pj,k − min
i=1,...,m

( i−1∑
k=1

pj,k +

m∑
k=i+1

pj−1,k

)

= max
i=1,...,m

( m∑
k=1

pj,k −
i−1∑
k=1

pj,k −
m∑

k=i+1

pj−1,k

)
= max
i=1,...,m

( m∑
k=1

pj,k −
m∑

k=i+1

pj−1,k

)
.

(2)

From Eq. (2), the dj−1,j depends only on two adjacent jobs, but not on85

the positions of other jobs in the sequence, thus a pre-calculated matrix Dn×n

can provide values of dj−1,j for any two adjacent jobs (Ying et al., 2016). Al-

though the calculation of distances between two adjacent jobs is not sequence

dependent, the calculation of TCT is sequence dependent. Therefore, the total

completion time for a given sequence π can be calculated by Eq. (3):90

TCTπ =

m∑
i=1

pπ(1),i +

n∑
j=2

( m∑
i=1

pπ(1),i +

j∑
k=2

Dπ(k−1),π(k)

)
= n

m∑
i=1

pπ(1),i +

n∑
j=2

(n− j + 1)Dπ(j−1),π(j).

(3)

2.2. Current status of heuristics in the literature

According to Lin and Ying (2016), heuristics for Fm |nwt |
∑
Cj problems

can be divided into two categories: constructive heuristics and meta-heuristics.

In the category of constructive heuristics, Rajendran and Chaudhuri (1990)

proposed two heuristics. According to their computational experiments, these95

two heuristics were more effective than other existing heuristics. Aldowaisan

and Allahverdi (2004) proposed six improved heuristics by using three differen-

t search methods, first by the same insertion scheme as in the NEH heuristic

(Nawaz et al., 1983), second by the same insertion technique as in Rajendran

and Ziegler (1997), and third by the adjacent pair-wise neighborhood exchanging100
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method. The NEH heuristic is considered to be the best constructive heuris-

tic to minimize makespan for permutation flow shop production (Kalczynski

and Kamburowski, 2007). Among the six improved heuristics proposed by Al-

dowaisan and Allahverdi (2004), the PH1(p) heuristic performed significantly

better than the heuristic proposed by Rajendran and Chaudhuri (1990) and105

the genetic algorithm proposed by Chen et al. (1996). Framinan et al. (2010)

proposed an FNM constructive heuristic to minimize total completion time, and

the results of their case studies showed that the FNM heuristic performed better

than the heuristics proposed by Rajendran and Chaudhuri (1990), Aldowaisan

and Allahverdi (2004), Bertolissi (2000), and Fink and Voß (2003). Using the110

constructive procedure as in Laha and Chakraborty (2009), Gao et al. (2013)

proposed two constructive heuristics, the improved standard deviation (ISD)

heuristic and the improved Bertolissi (IB) heuristic, which were developed from

the standard deviation heuristic in Gao et al. (2011) and the Bertolissi heuristic

(Bertolissi, 2000), respectively. The results of their case studies showed that the115

IB heuristic performed better than the NEH (Nawaz et al., 1983) and Bertolis-

si heuristics (Bertolissi, 2000). Laha et al. (2014) proposed a penalty-shift-

insertion (PSI) heuristic for Fm |nwt |
∑
Cj problems, and their computational

experiments showed that the PSI heuristic was relatively more effective and ef-

ficient than other heuristics in the literature at the time. More recently, Laha120

and Sapkal (2014) proposed an improved LS heuristic, and results showed that

the LS heuristic performed better than the PH1(p) heuristic (Aldowaisan and

Allahverdi, 2004) and the FNM heuristic (Framinan et al., 2010).

In the category of meta-heuristics, there are many studies that address Fm

|nwt |
∑
Cj problems (Shyu et al., 2004; Ying et al., 2016; Chen et al., 1996;125

Fink and Voß, 2003; Pan et al., 2008; Akhshabi et al., 2014; Zhu and Li, 2015;

Qi et al., 2016). Chen et al. (1996) applied a genetic algorithm. Fink and

Voß (2003) proposed various meta-heuristics using different techniques, such as

the steepest descent, simulated annealing (SA) and reactive tabu search (RTS).

Their experimental results showed that SA and RTS obtained better solutions130

with a CPU time of 1000 seconds on a 200-job instance. Recently, Ying et al.
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(2016) proposed a self-adaptive ruin-and-recreate algorithm to minimize total

flow time, and the results showed that their algorithm performed better than

other existing algorithms. Qi et al. (2016) proposed a fast local neighborhood

search algorithm, and experimental results showed that their algorithm was135

more effective than major existing algorithms in terms of both quality and

robustness. However, in general, it takes much more computation time for meta-

heuristics than constructive heuristics to generate near-optimal solutions. This

prevents the general application of meta-heuristics for production scheduling in

manufacturing. For a more comprehensive review of current heuristics for Fm140

|nwt |
∑
Cj problems, please see Allahverdi (2016).

2.3. Three typical heuristics

2.3.1. The PH1(p) heuristic

The PH1(p) heuristic (Aldowaisan and Allahverdi, 2004) mainly includes

three parts: initial sequence generation, NEH insertion and adjacent pair-wise145

neighborhood exchanging. The steps of the PH1(p) heuristic are described

below:

Step 1: Set the position index k=1, the set of sequenced jobs S=∅ and the set

of unsequenced jobs U = {all jobs}.

Step 2: Choose job j in U such that
∑m
i=1 pj,i ≤

∑m
i=1 ph,i where h means any150

of the rest jobs in U. Remove job j from U and place it in the position

k of S.

Step 3: Set k=k+1. Calculate TCT by inserting each job j∈U in the position

k in S, remove the job with the minimum TCT from U to put in the

position k in S.155

Step 4: If k=n, go to Step 5, otherwise return to Step 3.

Step 5: The sequence S is considered as the initial sequence π0, with a value

of total completion time, TCT0. Set the current best total completion

time TCTb=TCT0, the current best sequence πb=π0, and the number

of iterations r=1.160
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Step 6: Apply NEH (Nawaz et al., 1983) insertion method to the sequence πr−1

to produce πr and calculate TCTr.

Step 7: If TCTr < TCTb, update TCTb=TCTr and πb=πr, otherwise, keep

TCTb and πb unchanged.

Step 8: Set r=r+1. If r>10 go to Step 9, otherwise go to Step 6.165

Step 9: For k=1 to n-1, apply an adjacent pair-wise neighborhood method by

exchanging the positions of job k and job k+1 to the sequence πb to

obtain n-1 sequences. If the best sequence among them has a smaller

TCT, update TCTb and πb.

Step 10: Output the sequence πb and total completion time TCTb.170

The computational burden of the PH1(p) heuristic is determined by Steps 6-8

where the NEH insertion is applied 10 times. The computational complexity

of the NEH insertion is O(n3) for Fm |nwt |
∑
Cj problems. Hence, the com-

putational complexity of the PH1(p) heuristic is O(n3). Although the PH1(p)

heuristic was significantly more effective than the heuristics proposed by Rajen-175

dran and Chaudhuri (1990) and the genetic algorithm proposed by Chen et al.

(1996), it requires more computation time.

2.3.2. The FNM heuristic

The FNM heuristic (Framinan et al., 2010) uses the same procedure to gener-

ate the initial sequence as the Bertolissi heuristic (Bertolissi, 2000), and improves180

solutions by using the techniques of neighborhood insertion and neighborhood

interchanging. The steps of the FNM heuristic are as follows:

Step 1: Set current best solution πb=∅; for each pair of jobs j, k (j = 1, · ·

·,n; k = 1, · · ·,n; j 6= k), compute the total completion time of each pair

TCTj,k=2pj,1+
∑m
i=2 pj,i +Rm(j,k), whereRm(j,k)=pk,m+max(Rm−1(j,k),185 ∑m

r=2 pj,r), and R1(j,k)=pk,1.

Step 2: Select the pair of jobs q, s that have the minimum TCTq,s, i.e., TCTq,s

≤ TCTj,k, ∀ j, k. Set the first two positions of the partial sequence πb

to q, s, i.e., πb(1)=q, and πb(2)=s; set j=2.
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Step 3: Obtain a job r not in πb such that TCTπb(j),r ≤ TCTπb(j),k ∀ k, and190

append job r to πb. Insert each job at each position into the rest

of positions of πb, and compute the TCT of the generated sequences.

Among them (including πb), select the sequence with the best TCT

as a new sequence π′, and then interchange each job at each position

with the rest jobs of π′. Set πb as the sequence with the smallest TCT195

(including π′).

Step 4: Set j=j+1. If j=n, accept πb as the final sequence, otherwise go to

Step 3.

The computational burden of the FNM heuristic is determined by Step 3, where

the insertion and interchange techniques are applied. The computational com-200

plexity of the FNM heuristic is O(n4). The results of their case studies showed

that the FNM heuristic performed better than the heuristics proposed by Ra-

jendran and Chaudhuri (1990), Aldowaisan and Allahverdi (2004), Bertolissi

(2000), and Fink and Voß (2003). However, the computational complexity of

the FNM heuristic is higher than other constructive heuristics.205

2.3.3. The LS heuristic

The LS heuristic (Laha and Sapkal, 2014) generates the initial sequence by

taking bottleneck machines into consideration (Kalir and Sarin, 2001; Rajendran

and Alicke, 2007), and the priority of jobs in the initial sequence is given by the

sum of their processing times on the bottleneck machines. The solutions are210

improved by using the same insertion technique as in Laha and Chakraborty

(2009). The steps of the LS heuristic are as follows:

Step 1: Set the band width w=1. From machines 1 to m, calculate Sumw=
∑n
j=1∑

i∈w pj,i. Set up a set of bottleneck machines {B} that consists of ma-

chines with the largest Sumw, and generate a sequence by arranging215 ∑
i∈B pj,i in a non-descending order.

Step 2: For w=2 to m. By including one machine left or right adjacent to

{B} into the set of bottleneck machines respectively, calculate the two
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possible values of Sumw. Update the set of bottleneck machines that

have a larger Sumw, and generate a sequence by arranging
∑
i∈B pj,i220

in a non-descending order. Take 5-machine flow shop as an example.

Assume that as w=1, {B}={M4}. As w=2, we compare Sumw based

on {B}={M3,M4} and {B}={M4,M5}. If w=2 and {B}={M3,M4},

as w=3, we compare {B}={M2,M3,M4} and {B}={M3,M4,M5}. If

w=3 and {B}={M2,M3,M4}, as w=4, we compare Sumw based on225

{B}={M1,M2,M3,M4} and {B}={M2,M3,M4,M5}. Finally, we se-

quence jobs by
∑
i∈B pj,i and {B}={all machines}.

Step 3: A number of m sequences are obtained, and the one with the smallest

TCT is selected as the initial sequence. Set the number of iterations r

from 1 to 10, and repeat Steps 4 to 7.230

Step 4: Set k=1. Select the first two jobs from the initial sequence, obtain

the better sequence of two-job partial sequences, and consider it as the

current sequence.

Step 5: Set k=k+1. Insert the next two jobs as a block from the initial sequence

to each of the 2k -1 possible positions of the current sequence. Select the235

best partial sequence as the current sequence. Next, place the first job

in the block into all possible positions of the current sequence, update

the current sequence if the obtained sequence yields a smaller TCT,

otherwise keep the current sequence. Place the second job in the block

into all possible positions of the current sequence, update the current240

sequence if the obtained sequence yields a smaller TCT, otherwise keep

the current sequence.

Step 6: Repeat Step 5 until all jobs are sequenced. If there is a single job left

in the initial sequence, consider it as a block.

Step 7: For j=1 to n-1, insert the j th job in the current sequence into n-j245

possible positions in the forward direction, which generates n(n-1)/2

sequences. Update the current sequence if the obtained sequence yield-

s a smaller TCT, otherwise keep the current sequence. Consider the

current sequence as the initial sequence, and go to Step 8.
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Step 8: Set r=r+1. If r≤10, go to Step 4, otherwise, output the current se-250

quence and its TCT.

The computational burden of the LS heuristic is determined by Steps 4-5, where

the insertion technique is applied 10 times. Hence, the computational complex-

ity of the LS heuristic is O(n3). The results of their case studies showed that

the LS heuristic performed better than the PH1(p) heuristic (Aldowaisan and255

Allahverdi, 2004) and the FNM heuristic (Framinan et al., 2010). However, in

their case studies, the maximum number of jobs is 70. Thus, more investigation

is necessary for large-scale problems.

3. Our CFI heuristic

Our CFI heuristic consists of three phases: phase 1 for initial sequence gen-260

eration, phase 2 for the insertion and neighborhood exchanging, and phase 3

for iteration improvement. To improve effectiveness of our CFI heuristic, we

take both current idle times and future idle times into consideration to generate

the initial sequence, and apply the insertion and neighborhood exchanging tech-

niques. To improve efficiency of our CFI heuristic, we introduce an objective265

increment method to calculate TCT while applying neighborhood exchanging.

In addition, we determine the number of iterations as 6 rather than 10 as in

the PH1(p) (Aldowaisan and Allahverdi, 2004) and LS (Laha and Sapkal, 2014)

heuristics. Six iterations reduce the computation time and maintain effective-

ness of our CFI heuristic.270

3.1. Initial sequence algorithm (ISA)

While constructing the initial sequence, we assign higher weights to current

idle times generated by jobs in the head of the sequence than those generated

by jobs in the tail of the sequence. The steps of ISA are as follows:

Step 1: Set the position index k=1, the set of sequenced jobs S=∅ and the set275

of unsequenced jobs U={all jobs}.
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Step 2: Select the j th job (denoted as J[j] in U (j=1,· · ·,n-k+1), place it into

the position k in S, and calculate the average processing time (APTi)

of all jobs in U except the selected J[j] on each machine. Set up an

artificial job, and its processing time on each machine equals to APTi280

(Liu and Reeves, 2001; Li and Freiheit, 2016). Append this artificial

job to J[j], that is the artificial job is located on the (k+1)th position

in S.

Step 3: Calculate the idle time between J[j] and the (k -1)th job in S, which is

considered as the current idle time CI(j)=
∑m
i=1(Cj,i − pj,i − Ck−1,i) ,285

where C0,i = 0 ∀ i. Calculate the idle time between J[j] and the artificial

job, which is considered as the future idle time FI(j)=
∑m
i=1(Ck+1,i −

APTi − Ck,i). The index function f(j)=(n-k)CI(j)+FI(j) is computed.

For j=1,· · ·,n-k+1, each job in U has its own index function value, and

we remove the job which has the minimum value of f(j) from U and put290

it into the kth position in S. Set k=k+1.

Step 4: If k<n, go to Step 2, otherwise, append the last one job in U to the

last position in S, and output S as the initial sequence π0.

3.2. Proposed CFI heuristic

We use techniques of insertion and neighborhood exchanging to further im-295

prove effectiveness of the CFI heuristic. In addition, an objective increment

method is used to calculate the increment of TCT after a pair of jobs in the

sequence are exchanged, instead of calculating TCT for the whole sequence af-

ter exchanging. The objective increment method reduces the computational

complexity of calculating TCT from O(n) to O(1) when using the neighbor-300

hood exchanging technique. The steps of the CFI heuristic in our study are as

follows:

Step 1: Compute the distance matrix Dn×n and obtain the initial sequence π0

using ISA. Let TCT0 be the total completion time of π0. Set the cur-

rent best total completion time TCTb=TCT0, the current best sequence305

πb=π0, and the number of iterations r from 1 to 6 for Steps 2 to 6.
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Step 2: Select first two jobs from πb, and choose the partial sequence with a

smaller TCT.

Step 3: First, apply the NEH insertion technique (Nawaz et al., 1983) to the

obtained partial sequences, select the best partial sequence with min-310

imum TCT as current sequence. Next, exchange the position of each

job in the current sequence with that of the rest jobs. Among sequences

generated by interchanging, the objective increment method is used to

calculate ∆TCT. If one sequence yields the smallest negative ∆TCT,

set this sequence as the current sequence, otherwise, keep the current315

one.

Step 4: Repeat Step 3 until all jobs are scheduled, and set the current sequence

as πr with TCTr.

Step 5: If TCTr < TCTb, set TCTb=TCTr and πb=πr.

Step 6: For j=1 to n-1, insert the j th job in πr into n-j possible positions in320

the forward direction. If these sequences generate a lower TCT than

TCTb, then update πb and TCTb.

Step 7: Update r=r+1. If r≤6, return to Step 2; otherwise, go to Step 8.

(Note: the condition r≤6 is concluded from a case study.)

Step 8: Output the final πb and TCTb.325

While using the neighborhood exchanging technique in Step 3, we introduce

an objective increment method to calculate TCT. When two jobs of different

positions in the sequence are exchanged, we calculate the increment of TCT

based on the positions of these two jobs, instead of calculating TCT for the

whole sequence. For example, assume there are five jobs scheduled and the330

distance matrix D5×5 is computed. For the sequence π={J1, J2, J3, J4, J5},

TCTπ=5
∑m
i=1 p1,i +

∑5
j=2(n − j + 1)Dj−1,j using Eq.(3). Let J1 and J2 be

exchanged, and update the sequence as π′={J2, J1, J3, J4, J5}. The objective

increment is ∆TCT=5(
∑m
i=1 p2,i −

∑m
i=1 p1,i)+4(D2,1 −D1,2)+3(

D1,3 − D2,3). Then TCTπ′ = TCTπ + ∆TCT . Therefore, using the objective335

increment method, the TCT can be calculated without computing TCT for the
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whole sequence. For the details of our objective increment method, please see

Appendix A and a numerical illustration of the CFI heuristic can be found in

Appendix B.

The main computational burden of the CFI heuristic is determined by the340

NEH insertion and neighborhood exchanging techniques in Step 3. The compu-

tational complexity for the NEH insertion is O(n3) including calculating TCT

with O(n) when selecting the best insertion position. The computational com-

plexity for neighborhood exchanging technique is also O(n3) including calcu-

lating TCT with O(1) when selecting the best exchanged pair. Therefore, the345

overall computational complexity of the CFI heuristic is O(n3), which is the

same as that of the PH1(p) and LS heuristics, and less than that of the FNM

heuristic.

4. Computational results using benchmarks and generated data

To verify the improvement on effectiveness as a result of the ISA, we compare350

our CFI heuristic with an alternative version of the CFI heuristic, the CFI-SPT

heuristic. The initial sequence in the CFI-SPT heuristic is generated by the

shortest processing time (SPT) rule, because SPT rule is good to min(TCT)

in general (Li and Freiheit, 2016). Afterwards, we compare our CFI heuris-

tic with the PH1(p) (Aldowaisan and Allahverdi, 2004), the FNM (Framinan355

et al., 2010), and LS (Laha and Sapkal, 2014) heuristics for solving Fm |nwt |∑
Cj problems. For effectiveness, we use average relative percentage devia-

tion (ARPD), maximum percentage deviation (MPD), and percentage of the

best solutions (PBS) to evaluate the performance of each heuristic based on

both small-scale and large-scale instances. ANOVA and paired t-tests are used360

to statistically verify the improvement on effectiveness based on large-scale in-

stances. To evaluate efficiency, we use the computation times based only on

large-scale instances, as the computation times for the small-scale instances are

negligible, less than 0.1 second.

For small-scale instances, the number of jobs is 5, 6, 7, or 8, and the number365
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of machines is 5, 10, 15, 20, or 25. Thus, there are 20 combinations. For each

combination, 30 instances are generated randomly, and the processing times for

each instance are integers, following a uniform distribution in [1, 99]. In total,

there are 600 instances in small-scale.

For large-scale instances, Taillard′s benchmarks (Taillard, 1993) are classic370

and commonly used to test the performance of heuristics for flow shop scheduling

(Ye et al., 2016; Lin and Ying, 2016; Ying et al., 2016; Qi et al., 2016). Taillard′s

benchmarks consist of 120 instances in 12 combinations, with 10 instances for

each combination, where the number of jobs is 20, 50, 100, 200 or 500, and the

number of machines is 5, 10 or 20.375

Three criteria are used to evaluate effectiveness of each heuristic (Ye et al.,

2016):

(1) Average relative percent deviation (ARPD):

ARPD =
1

N

N∑
i=1

TCTi(H)−Bestknowni

Bestknowni

× 100

(2) Maximum percent deviation (MPD):

MPD = max
i=1,...,N

(
TCTi(H)−Bestknowni

Bestknowni

)
× 100

TCTi(H) is the total completion time obtained by heuristic H for an in-

stance i in a combination. N is the number of instances for each combi-

nation. N is 30 for small-scale instances but is 10 for large-scale instances.380

Bestknowni is the optimal solution for small-scale instances by using ex-

haustive enumeration. However, for large-scale instances, the best known

solutions are from Qi et al. (2016), who proposed the best known upper

bounds for Fm |nwt |
∑
Cj problems based on Taillard′s benchmarks.

(3) Percentage of the best solutions (PBS)385

PBS is the percentage of instances for which a heuristic achieves the best

performance among the four heuristics. The row total for PBS does not nec-

essarily sum to 100% since some heuristics may tie on the best performance

for some instances.

15



To verify the improvement of initial sequences, we compare our CFI and390

CFI-SPT heuristics based on ARPD. The improvement is calculated by (ARPD

of CFI-SPT − ARPD of CFI)/ARPD of CFI-SPT×100%. The results of this

comparison are listed in Table 1. From Table 1, we can see that the ISA improves

effectiveness by 33.3% on 600 small-scale instances and 8.8% on 120 large-scale

instances, respectively.395

Table 1: ARPDs of our CFI and CFI-SPT heuristics (%)

CFI CFI-SPT Improvement

Small-scale 0.06 0.09 33.3

Large-scale 2.08 2.28 8.8

4.1. Small-scale instances

For small-scale instances, the results are shown in Table 2. Our CFI heuristic

achieves the best performance on ARPD of 0.06%, on MPD of 2.98%, and on

PBS of 88%.

As shown in Table 2 for small-scale instances, with respect to ARPD, the LS400

heuristic achieves 0.21%, better than the PH1(p) heuristic of 0.37% and FNM

heuristic of 0.23%. Our CFI heuristic achieves the smallest ARPD of 0.06% from

the optimal. With regard to MPD, the LS heuristic achieves 4.11%, smaller

than the PH1(p) of 5.99% and FNM heuristic of 5.61%. Our CFI heuristic also

achieves the smallest MPD of 2.98%. With respect to PBS, the LS and FNM405

heuristics are very close, 75% and 73%, respectively, better than the PH1(p)

heuristic of 65%. Our CFI heuristic reaches 88% of the best solutions, 17%

improvement over the LS heuristic.

4.2. Large-scale instances

For large-scale instances, the results are shown in Table 3. Our CFI heuristic410

achieves the best performance on ARPD of 2.08% and on PBS of 53%, but not
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Table 2: Average relative and maximum percent deviation (ARPD & MPD) for small-scale

instances (%)

Size PH1(p) FNM LS CFI
n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD
5 5 0.41 5.94 0.18 2.08 0.18 2.09 0.05 1.36

10 0.13 1.36 0.09 1.93 0.06 1.36 0.06 0.79
15 0.27 2.77 0.28 3.38 0.07 0.77 0.01 0.30
20 0.07 0.43 0.03 0.43 0.01 0.24 0.01 0.24
25 0.06 1.31 0.01 0.41 0.04 1.31 0.04 1.02

6 5 0.46 3.93 0.24 3.93 0.06 0.75 0.01 0.37
10 0.38 5.61 0.38 5.61 0.20 2.43 0.01 0.32
15 0.28 4.11 0.20 2.33 0.26 4.11 0.12 2.33
20 0.40 3.09 0.16 0.98 0.25 3.09 0.02 0.29
25 0.16 1.69 0.05 0.93 0.03 0.64 0.00 0.00

7 5 0.51 5.99 0.30 1.95 0.23 1.95 0.03 0.54
10 0.50 2.60 0.22 1.20 0.31 2.00 0.06 1.82
15 0.46 4.65 0.14 0.92 0.34 3.71 0.12 1.28
20 0.49 3.76 0.34 2.54 0.25 2.52 0.08 1.11
25 0.16 0.98 0.09 0.87 0.21 1.97 0.05 0.85

8 5 0.53 3.07 0.39 3.21 0.35 1.98 0.25 2.98
10 0.40 3.86 0.34 3.64 0.42 3.64 0.11 1.01
15 0.61 3.47 0.44 3.47 0.31 2.19 0.13 1.19
20 0.50 2.77 0.41 1.81 0.32 1.81 0.08 0.69
25 0.57 2.80 0.28 2.80 0.23 2.32 0.07 0.72

All instances 0.37 5.99 0.23 5.61 0.21 4.11 0.06 2.98
PBS 65 73 75 88

on MPD of 7.05%. The solutions of our CFI heuristic for each instance in

Taillard′s benchmarks can be found in Appendix C.

As shown in Table 3, the PH1(p) heuristic achieves ARPD of 3.47%, MPD

of 7.15% and PBS of 7%. The FNM heuristic achieves ARPD of 2.74%, MPD415

of 5.33% and PBS of 12%, better than the PH1(p) heuristic. The LS heuristic

obtains ARPD of 2.33%, MPD of 4.91%, and PBS of 30%, better than the

PH1(p) and FNM heuristics on effectiveness. Our CFI heuristic achieves the

smallest ARPD of 2.08% and the largest PBS of 53% among all four heuristics,

although the MPD of our CFI heuristic is not as good as the MPD from the420

FNM and LS heuristics.

ARPDs of heuristics for large-scale instances are used to plot the trend of

deviations as the number of jobs or machines increases, as shown in Fig 1.

As the number of jobs increases from 20 to 500, Fig 1(a) shows that the
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Table 3: Average relative and maximum percent deviation (ARPD & MPD) in Taillard′s

benchmark (%)

Size PH1(p) FNM LS CFI

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD

20 5 1.60 5.21 1.27 2.55 1.38 3.26 0.87 3.03

10 1.36 3.25 1.61 3.89 1.06 2.92 1.34 3.52

20 1.50 4.43 1.13 2.87 0.85 2.30 0.74 1.47

50 5 4.02 6.84 3.31 5.33 2.38 4.91 2.19 4.12

10 3.03 5.51 3.03 4.76 2.02 3.82 2.14 3.69

20 2.69 4.35 2.79 4.88 1.97 4.19 1.35 1.91

100 5 5.94 7.15 3.44 4.55 3.75 4.72 3.35 5.35

10 4.58 5.43 3.41 4.63 2.87 4.73 3.07 7.05

20 3.89 5.18 3.19 3.97 2.61 3.37 2.53 4.89

200 10 4.98 6.04 3.84 4.16 3.61 4.44 3.49 4.30

20 4.47 5.12 3.67 4.60 2.96 4.01 2.88 4.38

500 20 3.62 4.86 2.21 2.41 2.50 3.11 0.98 1.78

All instances 3.47 7.15 2.74 5.33 2.33 4.91 2.08 7.05

PBS 7 12 30 53

deviations of all four heuristics are very close when the number of jobs is 20,425

and then increase when the number of jobs changes from 20 to 100. In addition,

as the number of jobs increases from 100 to 500, the deviation of our CFI

heuristic drops the fastest compared with those of other three heuristics.

Fig 1(b) plots the trend of ARPDs against the number of machines, ranging

from 5 to 20 machines. The trends obtained by the PH1(p) and LS heuristics430

go downwards as the number of machines increases from 5 to 15, whereas the

deviations of both the FNM and CFI heuristics go up. However, when the

number of machines increases from 10 to 20, the deviation of our CFI heuristic

drops faster than those of other heuristics and reaches to the lowest point of

deviations.435

To verify effectiveness of our CFI heuristic, two statistical analyses are con-

ducted based on the large-scale instances. First, the analysis of variance (ANO-

VA) is used to test whether the ARPDs of the PH1(p), FNM, LS and CFI

heuristics are the same or whether some ARPDs are different. The ANOVA

results from Table 4 show that the difference of ARPDs among heuristics is440
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(a) Deviation of TCT by no. of jobs (%) (b) Deviation of TCT by no. of machines (%)

Figure 1: Average deviation from the best performance based on Taillard′s benchmarks

statistically significant with p-value=0.000.

Table 4: ANOVA results (95% Confidence Interval)

Source DF SS MS P

Heuristics 3 134.27 44.76 0.000

Error 476 890.40 1.87

Total 479 1024.68

Second, paired t-tests on the ARPD are performed to validate whether or not

there are significant differences among the PH1(p), FNM, LS and CFI heuris-

tics. As shown in Table 5, the estimates for mean differences between our CFI

heuristic and other heuristics are all smaller than 0, indicating that our CFI445

heuristic significantly outperforms the other three heuristics at confidence level

α=0.05.

Table 5: Paired t-tests results (α=0.05)

CFI vs. PH1(p) FNM LS

p-value 0.000 0.000 0.012

Estimate for mean difference −1.397 −0.664 −0.2517

95% CI for mean difference (−1.659,−1.135) (−0.886,−0.442) (−0.446,−0.057)
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4.3. Computation times

Computation times are used to evaluate efficiency of each heuristic. All four

heuristics are programmed in Matlab and run on a Dell Precision T1700 with450

Intel Core i5-4590 CPUs of 3.3 GHz.

Figure 2: The deviation from upper bound with the value of r

In order to improve efficiency of our CFI heuristic, we determine the number

of iterations r by changing r from 1 to 16 based on large-scale instances. We

calculate the deviations from upper bound for each value of r. Figure 2 indicates

that when the value of r is larger than or equal to 6, the deviation asymptotically455

reaches to the same level of 2.08%. Therefore, we set the number of iterations

r as 6.

The average computation time (in seconds) required for large-scale instances

by each heuristic is given in Table 6. On average, our CFI heuristic uses less

CPU time than the LS heuristic, but more CPU time than the PH1(p) and460

FNM heuristics. Although the computational complexity of the FNM heuristic

20



Table 6: CPU times (in seconds) of four heuristics for large-scale instances

n m PH1(p) FNM LS CFI

20 5 0.00 0.02 0.10 0.06

10 0.00 0.01 0.10 0.05

20 0.00 0.01 0.09 0.06

50 5 0.02 0.10 0.71 0.44

10 0.02 0.10 0.72 0.44

20 0.02 0.10 0.72 0.46

100 5 0.09 0.80 4.10 2.66

10 0.10 0.83 4.23 2.78

20 0.12 0.86 4.17 2.81

200 10 0.69 9.24 28.78 19.26

20 0.77 9.38 28.65 19.51

500 20 10.64 283.49 467.04 319.58

All instances 1.04 25.41 44.95 30.68

is O(n4), higher than that of the LS and CFI heuristics, respectively, the FNM

heuristic takes less computation times, because there are 10 iterations in the LS

heuristic and 6 in our CFI heuristic. Overall, the PH1(p) heuristic takes the

least computation times among the four heuristics. However, the effectiveness465

on performance justifies the computation times on efficiency for each heuristic.

5. Case study for OR scheduling using UKHC historical data

To validate our CFI heuristic for OR scheduling across the periop process

in a healthcare system, we carry out a case study based on historical OR data

from University of Kentucky Health Care (UKHC), in which the first come470

first serve (FCFS) rule is used for OR scheduling, especially for emergencies.

For operating room (OR) scheduling in healthcare systems, the periop process

consists of three stages: preoperatives (preop), intraoperatives (intraop), and

postoperatives (postop), where the collection of patient information and the

preparation for surgeries occur in the preop stage, surgeries occur in operating475

rooms in the intraop stage, and post-anesthesia care units, intensive care units,

or wards for recovery are in the postop stage (Gupta, 2007). Patients are not

supposed to wait during the process, especially from the intraop stage to the
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postop stage. Therefore, the peri-operative process can be modelled as a three-

stage no-wait flow shop.480

The historical data set obtained from UKHC consists of almost 30,000 cases

in 365 consecutive days from 2013 to 2014. Removing data from weekends and

holidays, we have more than 27,000 cases in 50 weeks with 5 days a week, i.e.,

in 250 days. First, we compare the sequences of the PH1(p), FNM, LS, and

CFI heuristics with the UKHC one based on average patient flow time (APFT),485

which equals to the total completion time divided by the number of patients

served in a day. Second, we use statistical process control (SPC) techniques to

compare the process capability based on APFTs generated by our CFI heuristic

and the actual UKHC data.

Table 7 shows the APFTs and standard deviations for four heuristics and490

the actual UKHC data. As shown in Table 7, our CFI heuristic can achieve the

smallest APFT with the smallest standard deviation.

Table 7: APFT (minutes) and standard deviation for four heuristics and UKHC

PH1(p) FNM LS CFI UKHC

APFT 545.19 544.83 544.91 544.74 613.09

Standard deviation 40.91 40.85 40.88 40.82 56.20

Using SPC techniques, we generate process capabilities for both CFI and

the UKHC data as shown in Figure 3. The user-defined lower specification limit

(LSL) and upper specification limit (USL) are set as 400 and 700 minutes, re-495

spectively, according to the historical data from UKHC. The process capabilities

cp and cpk are defined as cp=
USL−LSL

6×σ and cpk=min
(
USL−µ

3σ ,µ−LSL3σ

)
, where µ

is the average patient flow time and σ is the standard deviation for the process

performance (Montgomery, 2007).

Process capability cp indicates if the outcomes of a process are within the500

control limits. With the fixed range of specification limits, which is USL −

LSL, the larger the cp, the less the variation in process, which is 6σ. Process

capability index cpk indicates if the outcomes are centered around the average
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(a) Process Capability of CFI (b) Process Capability of UKHC

Figure 3: Capability analysis of average patients flow times in 250 days

performance. The larger the cpk, the less likely that the outcomes will drop

out of the limits, LSL or USL. As shown in Figure 3, the cp is 1.21 for our505

CFI heuristic and 0.90 for the UKHC data, and the cpk is 1.17 for our CFI

heuristic and 0.52 for the UKHC data. Obviously, the APFTs generated by

our CFI heuristic are more centered within the specification limits and with less

variation, compared to those from historical UKHC data.

(a) By CFI (b) By UKHC

Figure 4: Xbar-R charts of average patient flow times

Moreover, we generate the Xbar-R charts based on APFTs in 250 days as510

shown in Figure 4. The APFT is 544.7 minutes for our CFI heuristic, and

613.1 minutes for the data from UKHC. The improvement on average patient

flow times can be calculated by (613.1 − 544.7)/613.1=11.2%. The range of
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variation on our CFI heuristic is 205.5 minutes, less than that of 275.4 minutes

for the UKHC data.515

These results from Xbar-R charts support those of cp and cpk, and the 11.2%

improvement on average patient flow time indicates that potentially 3,000 ad-

ditional patients could be served in the year if our CFI heuristic was applied for

sequencing. However, in reality, OR scheduling and control is affected by many

other factors in addition to sequencing, such as emergencies, the availability of520

patients in the waiting list, surgical staff, and equipment, etc. These realities

are reflected in the UKCH data.

6. Conclusion

No-wait flow shop production is common in industry, where no waiting

time is allowed between intermediate operations. Minimization of total com-525

pletion time (TCT) for no-wait flow shop production has been proven to be

NP -complete. Therefore, heuristics are widely used to find near optimal solu-

tions for production scheduling in manufacturing. The PH1(p), FNM, and LS

heuristics are three typical heuristics recently developed in the literature. These

heuristics can obtain good solutions in a reasonable time, even for large-scale530

instances. We propose a CFI heuristic to minimize TCT for no-wait flow shop

production. To improve effectiveness, we first take the current idle times and

future idle times into consideration, proposing an initial sequence algorithm,

and then use the insertion and neighborhood exchanging methods to further

improve the solutions. To increase efficiency, we first introduce an objective535

increment method to reduce the computational complexity from O(n) to O(1)

in calculating TCT, and then set the number of iterations in our CFI heuristic

to further reduce the computation time.

Compared with the PH1(p), FNM and LS heuristics, based on 600 small-

scale instances, our CFI heuristic achieves the best performance on average540

relative percentage deviation (ARPD), maximum percentage deviation (MPD),

and the percentage of the best solutions (PBS). Based on large-scale instances

24



in Taillard′s benchmarks, our CFI heuristic achieves the best performance on

ARPD and PBS, although not on the MPD. In addition, on average, the CPU

time of our CFI heuristic is 30.68 seconds, based on Taillard′s benchmarks, less545

than 44.95 seconds of the LS heuristic.

In a case study using historical data from UKHC, we found our CFI heuris-

tic can achieve 11.2% improvement on average patient flow times over UKHC′s

performance, and the average patient flow times generated by our CFI heuris-

tic are under better process control with less variation, which means additional550

patients can potentially be served and there is a greater control of OR manage-

ment across the peri-operative process. Overall, our CFI heuristic can achieve

good effectiveness and efficiency for no-wait flow shop scheduling.

Variation in processing times is a common disturbance to flow shop produc-

tion in manufacturing or healthcare systems. Our future research will focus on555

adaptive control by using variants of our CFI heuristic.
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Appendix A. Objective increment method

Assume there is a sequence π={π1, π2, · · ·, πj−1, πj , · · ·, πn}, and the corre-

sponding TCT is TCTπ. When πk and πj (0<k<j≤n) in π are exchanged,

the new sequence π′ is generated, the difference of TCT between π′ and π, i.e.,560

∆TCT (k, j), can be calculated by one of the following conditions:

• When k=1 and j=2

∆TCT (k, j) = n
( m∑
i=1

pπ′k,i −
m∑
i=1

pπk,i

)
+ (n− 1)(Dπ′k,π

′
j
−Dπk,πj

)

+ (n− 2)(Dπ′j ,π
′
j+1
−Dπj ,πj+1

)

• When k=1 and j=3,· · ·,n-1

∆TCT (k, j) = n
( m∑
i=1

pπ′k,i −
m∑
i=1

pπk,i

)
+ (n− 1)(Dπ′k,π

′
k+1
−Dπk,πk+1

)

+ (n− j + 1)(Dπ′j−1,π
′
j
−Dπj−1,πj ) + (n− j)(Dπ′j ,π

′
j+1
−Dπj ,πj+1)

• When k=1 and j=n

∆TCT (k, j) = n
( m∑
i=1

pπ′k,i −
m∑
i=1

pπk,i

)
+ (n− 1)(Dπ′k,π

′
k+1
−Dπk,πk+1

)

+ (Dπ′j−1,π
′
j
−Dπj−1,πj )

• When k=2,· · ·,n-2 and j=k+1

∆TCT (k, j) = (n− k + 1)(Dπ′k−1,π
′
k
−Dπk−1πk

) + (n− k)(Dπ′k,π
′
j
−Dπk,πj

)

+ (n− j)(Dπ′j ,π
′
j+1
−Dπj ,πj+1

)

• When k=2,· · ·,n-3 and j=k+2, · · ·,n-1

∆TCT (k, j) = (n− k + 1)(Dπ′k−1,π
′
k
−Dπk−1πk

) + (n− k)(Dπ′k,π
′
k+1
−Dπk,πk+1

)

+ (n− j + 1)(Dπ′j−1,π
′
j
−Dπj−1,πj

) + (n− j)(Dπ′j ,π
′
j+1
−Dπj ,πj+1

)

• When k=2,· · ·,n-2 and j=n

∆TCT (k, j) = (n− k + 1)(Dπ′k−1,π
′
k
−Dπk−1πk

) + (n− k)(Dπ′k,π
′
k+1
−Dπk,πk+1

)

+ (Dπ′j−1,π
′
j
−Dπj−1,πj )
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• When k=n-1 and j=n

∆TCT (k, j) = 2(Dπ′k−1,π
′
k
−Dπk−1πk

) + (Dπ′k,π
′
j
−Dπk,πj

)

Hence, the TCT of new sequence π′ can be calculated by the following equation:

TCTπ′ = TCTπ + ∆TCT

Therefore, the calculation of TCT for the new sequence can be reduced from

O(n) to O(1).
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Appendix B. A numerical illustration

To illustrate the main steps of our CFI heuristic, we provide a 5-job 4-565

machine instance as shown in Table B.1, which is the same as in Bertolissi

(2000).

Table B.1: Processing time of a 5-job 4-machine instance.

M1 M2 M3 M4

J1 12 24 12 13

J2 20 3 19 11

J3 19 20 3 15

J4 14 23 16 14

J5 19 15 17 22

• Initial sequence algorithm

Step 1: S=∅ and U={J1, J2, J3, J4, J5}.

Step 2: Consider J1 in the 1st position of S, the processing times of J2, J3, J4,570

and J5 on each machine are the average processing times. APTi=[18,

15.25, 13.75, 15.5]. Append this artificial job to J1, and we can obtain

the current idle time of 48, and future idle time of 13.25. The index

function value for J1, namely f(1), is 205.25. We can consider J2 in

the 1st position of S and obtain f(2)=211. Similarly, we can obtain575

f(3)=199.25, f(4)=222.25, and f(5)=230.25. Hence, we remove J3

that has the minimum f value from U and put it into the 1st position

of S.

Step 3: For the 2nd position in S, we can do the similar procedure as in Step

2, and obtain the index function values f for each job in U, which are580

f =[155, 53.33, 153, 100.33]. Hence we remove J2 from U and put it

into the 2nd position of S. Similarly, we generate the initial sequence

π0 as {J3, J2, J1, J5, J4}.
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• CFI heuristic

The distance matrix Dn×n calculated by Eq.(2) is shown in Table B.2. From585

the ISA, we obtain initial sequence π0 ={J3, J2, J1, J5, J4} and TCT0=501. Set

TCTb=501, πb ={J3, J2, J1, J5, J4}, and r=1.

Table B.2: Distance matrix Dn×n

J1 J2 J3 J4 J5

J1 - 17 15 28 29

J2 28 - 24 34 40

J3 31 15 - 35 36

J4 19 16 15 - 25

J5 13 11 15 14 -

We can select first two jobs, J3 and J2, from the initial sequence, and obtain

a TCT of 129 for a partial sequence {J3, J2}. Exchange the two jobs and obtain

a TCT of 130 for a partial sequence {J2, J3}. Hence, we fix the relative positions590

of two jobs as a partial sequence of {J3, J2}.

Inserting J1 from the initial sequence to each possible position of the par-

tial sequence {J3, J2}, we can have the following partial sequences, {J1, J3, J2},

{J3, J1, J2} and {J3, J2, J1} with partial TCTs of 228, 250, 229, respectively.

Hence, we choose the partial sequence of {J1, J3, J2} as the current sequence595

with the minimum partial TCT of 228. The neighborhood exchanging method is

applied, and the following partial sequences are examined, {J3, J1, J2}, {J2, J3, J1}

and {J1, J2, J3} with ∆TCTs of 22, 10 and 13, respectively. None of these values

is lower than 0, therefore, the current sequence remains as {J1, J3, J2}.

Insert J5 from the initial sequence to each possible position of the curren-600

t sequence, and the following partial sequences are examined: {J5, J1, J3, J2},

{J1, J5, J3, J2}, {J1, J3, J5, J2} and {J1, J3, J2, J5} with partial TCTs of 376,

376, 372, and 359, respectively. Hence, we choose {J1, J3, J2, J5} as the cur-

rent sequence with the minimum partial TCT of 359. The neighborhood ex-
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changing method is applied, and the following partial sequences are examined:605

{J3, J1, J2, J5}, {J2, J3, J1, J5}, {J5, J3, J2, J1}, {J1, J2, J3, J5}, {J1, J5, J2, J3}

and {J1, J3, J5, J2} with ∆TCTs of 36, 16, 36, 20, 18, and 13, respectively.

None of these values is lower than 0, therefore, the current sequence remains as

{J1, J3, J2, J5}.

Insert J4 from the initial sequence to each possible position of the current610

sequence and the following candidates are tried: {J4, J1, J3, J2, J5},

{J1, J4, J3, J2, J5}, {J1, J3, J4, J2, J5}, {J1, J3, J2, J4, J5} and {J1, J3, J2, J5, J4}

with TCTs of 526, 532, 542, 503 and 504. Hence, we choose {J1, J3, J2, J4, J5}

as the current sequence with minimum TCT of 503. The neighborhood ex-

changing method is applied and the following partial sequences are examined:615

{J3, J1, J2, J4, J5},{J2, J3, J1, J4, J5}, {J4, J3, J2, J1, J5},{J5, J3, J2, J4, J1},

{J1, J2, J3, J4, J5},{J1, J4, J2, J3, J5}, {J1, J5, J2, J4, J3},{J1, J3, J4, J2, J5},

{J1, J3, J5, J4, J2},and {J1, J3, J2, J5, J4} with ∆TCTs of 50, 32, 22, 54, 37, 46,

34, 39, 14 and 1. None of these values is lower than 0, therefore, the current

sequence remains as {J1, J3, J2, J4, J5} with TCT 503.620

After using insertion and neighborhood interchanging methods, we obtain

π1={J1, J3, J2, J4, J5} and TCT1=503. Since TCT1 is larger than TCTb, the

πb remains unaltered with TCTb 501. For j=1 to 4, insert j th job into each

possible position of π1 in the forward direction and get the following sequences:

{J3, J1, J2, J4, J5}, {J3, J2, J1, J4, J5}, {J3, J2, J4, J1, J5}, {J3, J2, J4, J5, J1},625

{J1, J2, J3, J4, J5}, {J1, J2, J4, J3, J5}, {J1, J2, J4, J5, J3}, {J1, J3, J4, J2, J5},

{J1, J3, J4, J5, J2} and {J1, J3, J2, J5, J4} with TCTs of 553, 510, 514, 510, 540,

541, 540, 542, 531, and 504. None of these values is lower than TCTb, the

πb remains unaltered with TCTb 501 and is used for further process till r=6

iterations are completed. Hence, the final sequence is {J3, J2, J1, J5, J4} with630

TCT 501.
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Appendix C. Solutions of our CFI heuristic in Taillard′s benchmarks

Table C.1: Solutions of our CFI heuristic in Taillard′s benchmarks

Instance Solution Instance Solution Instance Solution Instance Solution 
Ta001 15674 Ta031 77126 Ta061 320218 Ta091 1526495 
Ta002 17558 Ta032 84418 Ta062 308057 Ta092 1530470 
Ta003 15998 Ta033 79506 Ta063 301279 Ta093 1530953 
Ta004 17970 Ta034 84054 Ta064 284759 Ta094 1511854 
Ta005 15781 Ta035 86164 Ta065 296549 Ta095 1535620 
Ta006 15501 Ta036 81774 Ta066 292155 Ta096 1500762 
Ta007 15872 Ta037 79860 Ta067 304038 Ta097 1563778 
Ta008 16068 Ta038 81915 Ta068 297351 Ta098 1547407 
Ta009 16385 Ta039 77092 Ta069 315224 Ta099 1522429 
Ta010 15463 Ta040 85249 Ta070 304551 Ta100 1538367 
Ta011 25741 Ta041 116714 Ta071 420511 Ta101 2024174 
Ta012 26804 Ta042 114148 Ta072 397544 Ta102 2070240 
Ta013 22975 Ta043 108470 Ta073 414974 Ta103 2054907 
Ta014 22528 Ta044 114734 Ta074 426970 Ta104 2091421 
Ta015 23721 Ta045 118171 Ta075 404131 Ta105 2088352 
Ta016 22785 Ta046 114012 Ta076 414439 Ta106 2087322 
Ta017 21965 Ta047 119034 Ta077 404978 Ta107 2064240 
Ta018 24205 Ta048 117341 Ta078 408479 Ta108 2052833 
Ta019 23550 Ta049 112017 Ta079 416797 Ta109 2070279 
Ta020 24954 Ta050 117618 Ta080 423957 Ta110 2046873 
Ta021 39165 Ta051 175780 Ta081 570200 Ta111 11646936
Ta022 38009 Ta052 163344 Ta082 574956 Ta112 11945671
Ta023 38566 Ta053 161056 Ta083 570868 Ta113 11629905
Ta024 38812 Ta054 164654 Ta084 570673 Ta114 11804810
Ta025 39071 Ta055 170161 Ta085 562705 Ta115 11857565
Ta026 38620 Ta056 163056 Ta086 575052 Ta116 11753926
Ta027 39976 Ta057 168547 Ta087 572473 Ta117 11758172
Ta028 37240 Ta058 170710 Ta088 586881 Ta118 11798447
Ta029 39629 Ta059 167103 Ta089 574629 Ta119 11702236
Ta030 38422 Ta060 170845 Ta090 594755 Ta120 11806623
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