
 1

Balancing business and technical objectives for
supporting software product evolution

Muhammad Irfan Ullaha, Xueqi (David) Weib*, Barrie R. Naultc, Guenther Ruhea,d

a: Department of Computer Science, University of Calgary, T2N 1N4, Canada

b: School of Management, Fudan University, P.R. China, 200433
c: Haskayne School of Business, University of Calgary, T2N 1N4, Canada

d: Department of Electrical and Computer Engineering, University of Calgary, T2N 1N4, Canada
*Corresponding author. Tel: +86 21 2501 1242

E-mail addresses: miullah@ucalgary.ca (M. Ullah), weixueqi@fudan.edu.cn (X. Wei), nault@ucalgary.ca (B. Nault) and
ruhe@ucalgary.ca (G. Ruhe)

Abstract

Context: Successful software systems continuously evolve to accommodate feature requests of a diverse
customer-base. At some point during this evolution, the variety of customer needs and increased system
complexity suggests the consideration of a software product line (SPL).

Aim: The goal of this research is to support the decision maker facing the enhancement of an evolving
software system (ESS) by determining the most appropriate product line design (out of a given set of
candidate SPL portfolios) to minimize the technical risk and maximize the business value.

Method: The proposed method called OPTESS is aimed at finding an evolution plan for the ESS which
optimizes both the given technical and business objectives. Business analysis using a value-based pricing
mechanism is applied to a set of initially proposed SPL portfolios (for enhancing the ESS) such that profit
is maximized. Technical analysis is applied to the same initially proposed SPL portfolios to minimize the
risk of failure of ESS due to implementation of new features. Business and technical analyses improve the
performance of solutions for their respective objectives by modifying the feature sets of candidate SPL
portfolios. OPTESS helps the decision maker select a plan for enhancement of an ESS by performing trade-
off analysis between economic and technical objectives.

Results: The method was initially evaluated through a case study for a set of 9 new candidate features to
be added to an open source text editing system called jEdit. OPTESS helped the decision maker to identify
3 non-dominated solutions judged to be the best contenders for addition when considering both technical
and economic criteria.

Keywords
Software engineering decision support, cost-benefit analysis, trade-off analysis, economic
analysis, software product lines, software product evolution, open source systems

1 Introduction
Successful software systems continuously evolve to accommodate features requests from

customers. This system evolution increases the complexity of the architecture, thus increasing the
cost of maintenance. On the other side, by increasing features the software system attracts more
customers from diverse domains, making the system more successful. At a certain point during
the evolution of the system, the complexity of the architecture and the variations in customers’
needs triggers a software product line (SPL). A SPL is a set of software intensive systems that
share a common, managed set of features satisfying the specific needs of a particular market
segment or mission, and are developed from a common set of core assets in a prescribed way [1].
A number of real world software systems have evolved in this way. For example, Microsoft
Windows operating system was initially launched as a single product. Due to its success, it was
soon evolved into a SPL. One of the recent releases of this operating system, Windows 7, offers

 2

separate product variants for the home (Starter, Basic, Premium,) business (Professional,
Enterprise) and power users (Ultimate) market segments, where the term product variant refers to
an individual product in a SPL.

Creation of business value has always been advertised as one of the key benefits of a SPL
development approach. Several case studies have been reported citing numerous business and
technical benefits such as higher customer satisfaction, increase in productivity, reduction in
maintenance costs, etc., [1] [2] [38]. There is, however, a lack of scientific research quantifying
the economic value gained through adoption of a specific product line approach for a product. A
panel discussion “How to maximize business return on SPL” was organized in the recent 13th
International Software Product Line Conference (SPLC 2009) where practitioners and researchers
called for more research on how to define and increase business value from product lines. A key
conclusion was that value cannot be defined globally; it has to be defined for a specific product
line in a given organization [35].

Despite several benefits of adopting a product line development approach (higher quality,
productivity and return on investment) as reported in industrial case studies [1] [2], there is still
resistance amongst practitioners towards its adoption. Several reasons have been reported for this
resistance such as the loss of product ownership, high upfront investment, and the lack of
scientific evidence on economic benefits and risks of adopting a product line development
approach [3]. Our previous work provided decision support to transition a single software product
into a product line containing product variants addressing needs of specific customers’ segments.
A suitable portfolio is selected from the candidate SPL portfolios for enhancing the ESS by
analyzing the customers’ preferences for product features and the impact of the features on ESS’s
structure [4] [5]. The decision support for evolving a single software product in [5] can be
considered as a one dimensional approach since there is no consideration for the costs and
economic benefits of the candidate SPL portfolios.

Most of the existing SPL development methods do not connect the business and technical
aspects for developing and evolving SPLs [6]. Our method provides a link between these two
domains. The fundamental research question addressed by this paper is whether a single software
product facing feature requests for upcoming release should be evolved into a software product
line, recognizing that a single software product containing all the features for the upcoming
release is always considered as one an alternative along with all the candidate SPL portfolios
when evaluating the technical and business objectives.

We present a method called OPTESS (Optimization of Technical and Business Objectives for
Evolving Software Systems) which provides comprehensive decision support for selecting an
evolution plan for a single software product. In addition to the technical criterion, it also
considers costs and expected revenues from candidate SPL portfolios for enhancing the ESS. The
main content of the method is a trade-off analysis between technical risk and business value of
candidate evolution plans for enhancing the ESS. For the purpose of our analysis, we define
technical risk as the probability that a feature implemented in an evolving software system’s
structure will cause failure of the system. The business value of a software product is calculated
by subtracting its estimated cost of development from the projected revenue.

The specific research questions we address are:

RQ 1: From a given set of candidate SPL portfolios for enhancing an evolving software
system, which ones minimize the technical risk and maximize the business value?

To address the decision problem identified in RQ1, our proposed method brings together two
different but equally important criteria. The first criterion is related to the technical aspects of
evolving a single software product. For this purpose, we consider the impact of implementing

 3

new features in candidate SPL portfolios. The goal is to reduce the probability of failure when
features are implemented in ESS’s structure. The technical aspect is addressed by the second
research question.

RQ 2: How to estimate the risk of failure due to implementation of new features in the
ESS’s architectural structure?

The second criterion is related to the economic benefits of enhancing the single software
product to a SPL. For this purpose we calculate the costs and revenues of the single product and
the candidate SPL portfolios. The goal is to identify SPL portfolios which maximize the
economic benefits. Third research question addresses the economic aspect.

RQ 3: How to estimate the business value of a software product when considering both the
revenue and the cost associated with the SPL design?

The specific technical contributions of our work are:

(1) The decision support method OPTESS for trade-off analysis between technical risk
and business value of candidate SPL portfolios.

(2) Customization of an existing technique to estimate risk of failure due to
implementation of features in product variants being part of candidate SPL portfolios.

(3) Application of an economic pricing and revenue generation method to estimate the
business value of each candidate SPL portfolio.

(4) A proof of concept of the method by application to an open source software system.

The remaining sections organized as follows: Section 2 presents the research work related to
the solution approach. Section 3 presents background details of the techniques applied in the
method OPTESS. Section 4 presents the method OPTESS. Section 5 presents an illustrative case
study of the method on an open source software systems. Section 6 presents the applicability and
limitation of the method. Section 7 summarizes our conclusions and future research direction.

2 Related Work
There are four main research areas that are related to the proposed method. These areas are

decision support for software product evolution, risk estimation for implementing new features,
product line cost models, and pricing and revenue generation for SPLs.

2.1 Decision support for software product evolution
The need for decision support arises when decisions have to be made in complex, uncertain

and/or dynamic environments [7]. There are several works that address provision of decision
support for various aspects of software systems development. Turban et al., suggest that decision
support systems are most suitable for semi-structured and unstructured problems [8]. This is one
of the key characteristics of wicked problems, i.e., they are difficult to formulate [9]. Planning
releases for a single software product has been classified as a wicked problem [10]. Planning for a
portfolio of products is even more challenging. This calls for greater efforts to develop methods
and tools for supporting the decision making process in product line engineering. Our previous
work presented a decision support method COPE+ to address the fundamental research question
presented in Section 1. COPE+, however, provides a one dimensional approach to address this
problem by evaluating the alignment of candidate SPL portfolios with the architecture of the ESS.
OPTESS adds a second dimension to this analysis by evaluating the economic benefits of the

 4

candidate SPL portfolios. In this section we present an overview of some of the existing methods
that provide decision support for software product evolution.

Product Line Potential Analysis (PLPA) [11] is a decision support approach (partly)
addressing the research questions presented in Section 1. It is applied in a one day workshop for
personnel of a business unit. The authors have developed a set of criteria which they suggest is
important for answering this decision problem. These criteria are categorized as: main criteria
(essential for product line development and have to be fulfilled), inclusion criteria (indicates
product line already exists), supporting criteria (applied if a business unit has problems that
product line approach addresses) and exclusion criteria (to rule out factors that reduce economic
advantage of product line approach). Each one of these four categories has a set of fine grained
criteria. The authors have prepared a questionnaire to elicit information on these criteria. The
participants of the business unit are asked to fill out the questionnaire in the workshop. Their
answers are then mapped to the criteria to address the decision problem. The results of this
method are: yes (the product line approach is suitable for these products and markets), no, or
investigation required. The focus of this method is to provide decision support at a higher level of
abstraction without considering detailed attributes of the product portfolios. Additionally, it does
not consider the cost and revenue of developing the product line.

Product Line Technical Probe (PLTP) assesses an organization’s readiness to adopt product
line development approach [1]. It requires an organization-wide effort in which assessors gather
information through structured interviews of key stakeholders. The results are a set of findings
identifying the potential benefits, risks, as well as an assessment of the organization’s expertise
regarding product line development approach. The risks and benefits are identified at the
organizational level and not for an individual product or a product line.

Product Line Benefit and Risk Assessment method analyzes the benefits and risks for each of
the technical domains associated with the product line [12]. Hence, instead of just saying yes or
no to product line engineering, this method prioritizes technical domains for reuse potential. This
method has been modeled on the pattern of existing process maturity assessment methods. It does
not evaluate the benefits and risks at the feature level.

Almost all systems development methods perform scoping at initial product definition stage to
identify what (functionality) will be part of the system and what (functionality) will not be part of
the system. This activity becomes even more important in SPL development since a product line
contains multiple product variants. Most frameworks and methodologies for SPL development
include scoping as a distinct activity. It is used to identify products within the product line
(product portfolio scoping), features of these products as well as the features that will be
developed for reuse (asset scoping) [13]. PULSE-Eco v2.0 is one such approach [13]. It relies on
technical details such as economic benefit analysis to define products in the SPL. It does not,
however, look into the ESS’s structure to analyze the impact of new features.

2.2 Risk estimation for implementing new features
The enhancement of the ESS to one of the candidate SPL solutions requires the

implementation of features in the ESS’s structure. Each feature impacts one or more packages in
the system structure. A package is a composition of classes in objected oriented design and refers
to an element of implementation as defined by Bass et al., in [14]. Packages represent a code-
based way of considering the system structure. The purpose of risk estimation here is to compare
the candidate SPL solutions with respect to their risk of failure as a result of implementation of
new features. There is an extensive body of knowledge on risk management for software systems.
Boehm has identified top ten software risk items after investigating several large projects [15].

 5

One of his findings is that as the size of the requirement increases, the probability of failure also
increases.

Two approaches have been proposed in literature to estimate the probability that a change (due
to a bug fix or new feature implementation) in a software system will result in failure. The
techniques in the first approach use product measures such as size of the file, degree of nesting,
code complexity (such as McCabe’s cyclomatic complexity) to predict the probability of failure.
The techniques in the second approach for modeling fault rates use data from the change and
defect history of the program. Both approaches are applicable for the purpose of our method;
however, we are more interested in estimating the probability of failure using product measures
than historical data.

Therefore, we have selected and adapted a technique by Mockus and Weiss [16] to estimate
the probability of failure of the ESS. They have proposed a risk estimation model that estimates
the probability of failure by using the “change measures” for the feature being implemented.
These change measures capture information such as the number of packages modified for
implementing the feature, the number of lines of code added or deleted, the duration for
implementing the feature and experience of the developer. This model estimates the risk for one
feature implementation in isolation. However, in our case, each product variant (in a given SPL
portfolio) is typically developed by implementing more than one feature. Therefore, we have
customized their model to estimate risk.

2.3 Product line cost models
Boehm defines economics as the, “study of how people make decisions in resource-limited

situations” [17]. The investment in establishing a product line enables an organization to improve
quality, capture diverse markets, eventually increasing its revenues and profits as reported in
many case studies [1] [2]. Due to large upfront costs and risks of failure, industry is hesitant to
adopt product line development [3] [18]. There is a large body of knowledge on cost estimation
of software products [17]. Below we present an overview of the most popular cost estimation
models for SPL development.

The Constructive Product Line Investment Model (COPLIMO) is based on the COCOMO II
model [19]. COPLIMO determines the cost of a SPL in two components. The first reflects the
cost of initial development of the SPL architecture and the second reflects the post-development
extensions. This second cost component incorporates the reuse of previously developed
components in products developed later in the development life cycle. The qCOPLIMO model
extends the COPLIMO model by evaluating the additional benefits of higher quality in product
line development [20].

Structured Intuitive Model for Product Line Economics (SIMPLE) provides a high level
framework for estimating the cost of developing a SPL [21]. It provides four cost functions that
can be combined in a number of ways to estimate the cost of establishing a SPL. Boeckle et al.,
present seven scenarios that cover several possibilities of evolving and instantiating a SPL. As
opposed to COPLIMO, SIMPLE does not look into the costs and revenues from future extensions
of the product line. As we are only considering the cost of evolving the ESS into a SPL in one
release, we selected SIMPLE to estimate the cost of the SPL in our method.

The application of SIMPLE requires effort estimates for the features. Effort estimation
methods for software systems fall into three main categories: expert judgment, estimation by
analogy, and algorithmic cost estimation [22]. Expert judgment relies on the experience of
experts, and the accuracy of expert-based prediction is low. Algorithmic estimation involves the
application of mathematical models such as in COPLIMO [19]. The idea of analogy-based

 6

estimation is to determine the effort of the target feature (or project) as a function of the known
effort from similar historical features (or projects). Compared with the other two categories,
estimation by analogy performed best in 60% of the published case studies [23]. Existing
analogy-based effort estimation methods have several limitations. For example, the CATREG
method proposed by Angelis et al., can only work with data sets containing categorical (or
qualitative) attributes [24]. Many of the existing analogy-based effort estimation techniques can
only work data sets without any missing values [25]. Method AQUA proposed by Li and Ruhe in
[25] supports multiple data types by defining similarity measures for these data types. It is also
able to tolerate missing values in the data set. AQUA has performed better than other analogy-
based effort estimation techniques using publicly available data sets. We have selected AQUA to
implement cost functions of SIMPLE.

2.4 Pricing and revenue generation for SPLs
Pricing and revenue generation for SPLs have been broadly explored in the economic and

marketing literatures. The major purpose of SPL design is to meet the requirements of customers
in different market segments to maximize profit. Pricing of a SPL is normally determined through
a value-based pricing mechanism, which is to set prices for different product variants according
to customers’ valuations [26].

Moorthy [27] proposed a customer self-selection model to evaluate the product line design
strategies of a monopolist. He argued that customers should be able to choose their preferred
products freely and the optimal product line design strategies should address this in order to
maximize the overall profits of the product line. In order to make customer self-selection work for
SPL design, the individual rationality (IR) and incentive compatibility (IC) constraints are
normally imposed on pricing of a SPL [28]. The IR constraint ensures that a consumer gets non-
negative surplus from purchasing their chosen product variant and the IC constraint indicates that
the consumer prefers the product variant that maximizes her surplus.

Product variants in a SPL can be either horizontally or vertically differentiated. For vertical
differentiation, a product variant includes all the features of another product variant and more,
while for horizontal differentiation; different product variants include some special features of
their own although they usually share some common features. Wei and Nault [29] proposed
analytical models to develop product line design strategies under both situations when a
monopolist chooses to offer different products to meet the special requirements of different
groups of customers to maximize its overall profit. In our method, we follow Wei and Nault [29]
to calculate revenues generated from a product line in order to estimate its business value.

3 Technical background for method OPTESS
SPL development aims at maximizing profit. This includes two parts: (i) cost of establishing a

SPL and (ii) revenue generated from the product line. To estimate costs of establishing a SPL, we
adopt the SIMPLE model [21]. To maximize revenues from a SPL, we follow pricing strategies
of information goods developed in information systems economics based on economics and
marketing research, and adjust them to the purposes of this research. To estimate the risk of
failure by implementing new features in the ESS, we customize an existing risk estimation
method. In the following subsections, we present an overview of these techniques.

3.1 SIMPLE
SIMPLE proposed by Boeckle et al., provides a framework to estimate the cost of developing

a SPL [21]. We selected SIMPLE to estimate the costs of candidate SPL portfolios for the reasons

 7

discussed in Section 2.3. The model has four cost functions, each of which represents a separate
idea and can be implemented through a variety of approaches. Below we provide an overview of
the four cost functions:

Definition 1 (Cunique()): This function, given the relevant parameters, returns the cost to
develop unique software that is not based on a product line platform. Usually, this will be a small
portion of the product but in the extreme it could be a complete product. We apply the method
AQUA [25] to estimate the effort (in person months) for implementing each unique feature.

Definition 2 (Ccab()): This function returns the cost to develop the shared features for a SPL
portfolio. The shared features cost more than unique features because of the variability required
to support multiple product variants. We include this additional effort by considering the
packages in ESS’s structure impacted by the shared features and correspondingly adjust the effort
estimates suggested by AQUA [25].

Definition 3 (Creuse()): This function returns the cost to reuse the shared features in multiple
product variants. It includes the cost of tailoring it (by applying appropriate variability
mechanisms) for use in the intended product variant and performing the extra integration tests.
We follow the recommendations by experts [37] to estimate the cost of reusing shared features
across multiple product variants in a SPL.

Definition 4 (Corg()): This function returns the cost for an organization to adopt a product
line development approach for its products. Such costs can include reorganization, process
improvement, training and other organizational remedies as necessary.

With these functions, however implemented, the cost of developing the i-th SPL portfolio can
be expressed as:

Cost(i) = Cunique(i) + Ccab(i) + Creuse(i) + Corg(i) (1)

These cost functions form the basis for a number of different scenarios of instituting or
evolving a SPL [21]. One such scenario will be considered in details in Section 5.3.2.

3.2 Pricing and Revenue Generation Applied to SPL
After a SPL portfolio has been designed, pricing strategies are implemented to maximize

revenue. We assume customer self-selection [27] where a customer selects the product variant to
maximize their surplus which equals to the value the they receive from the product variant less
price of the product variant. Customer self-selection has been widely adopted in research on the
pricing of product variants in SPL portfolios [28] [29].

In our method, we follow Wei and Nault [29] to calculate the overall revenue generated from a
SPL to lay an economic basis for the estimation of the business value of the SPL design. Revenue
generated from the SPL is the sum of revenues from all the market segments. The total revenue
generated from a SPL portfolio depends on the price of each product variant and number of
customers who purchase the product variant. To specify the revenue generation of a SPL portfolio,
we define the following variables:

Definition 5 (Revenue R(p(i,j))): The revenue generated from the j-th product variant in the i-
th SPL portfolio, and equals to the price of the product variant times the number of customers that
select this product variant.

 8

Definition 6 (Price of each product variant P(p(i,j))): The price of the j-th product variant in
the i-th SPL portfolio, which is the same for all customers that select it.

Definition 7 (Customer’s valuation Vk(p(i,j))): Customer k’s valuation for the product variant
p(i,j).. In our model, the customer’s valuation of a product variant is determined through the
feature voting scores.

In order to make customer self-selection work, two classical constraints must be satisfied: the
IR constraint and the IC constraint. As discussed earlier, the IR constraint indicates that a
customer always gets non-negative surplus from purchasing a certain product variant. If the price
for a certain product variant p(i,j) is higher than the value the customer can get from it, the
customer would choose not to purchase. Thus the IR constraint can be expressed as:

Vk(p(i,j)) - P(p(i,j)) ≧ 0, for all p(i,j) (2)

In order to maximize revenue, some consumers with low valuation may not purchase any
product variant if prices of all product variants are set higher than their valuation, in other words,
not all customers are necessarily served with a product variant.

The IC constraint indicates that when there are many product variants for the customer to
select from, the one selected maximizes their surplus. It means the customer k gets greater surplus
from purchasing product variant p(i,j) than any other product variant p(i,l). The IC constraint can
be expressed as:

Vk(p(i,j)) - P(p(i,j)) ≧ Vk(p(i,l)) - P(p(i,l)), for all p(i,j) and p(i,l) (3)

The IC and IR constraints determine the price relationship of different product variants in a
SPL portfolio. More details will be discussed in the cost-benefit analysis in Section 4.2.2.

Definition 8 (Q(p(i,j))): The quantity of a product variant p(i,j). For a specified product
variant p(i,j), the number of customers depends on the price of the product variant and the
valuation of each customer.

The total revenue generated from the ith SPL portfolio is the sum of revenues generated from
each product variant. Thus, we express the total revenue as:

R(i) = ∑j(P(p(i,j)) * Q(p(i,j))) (4)

The combination of revenue generated from a SPL portfolio and relevant costs associated with
the product line development determines the business value of that portfolio.

3.3 Estimating Risk of Software Change
Mockus and Weiss have proposed a model for estimating risk of implementing a maintenance

request in a software system [16]. They consider the implementation of each maintenance request
(MR) in isolation. For the purpose of this work, we assume that multiple MRs (or product
features) are implemented sequentially to develop a product variant in any given SPL portfolio.
Correspondingly, we have replaced the diffusion (DF) metric from the model by Mockus and
Weiss with another metric, which we call as adjusted diffusion (ADF) to reflect this assumption.

Definition 9 (Maintenance request): We will assume that an MR is the request to implement
one new feature in the ESS.

 9

Mockus and Weiss’s model uses the following five metrics to estimate the probability that a
change implemented as a result of an MR will cause failure in the software system:

Definition 10 (Diffusion): Diffusion (DF) is the number of distinct subsystems modified in
the ESS’s structure to implement the change.

Definition 11 (Delta): Delta is an atomic change to the source code recorded by a version
control system. Each MR may require changes to several source code files. A file may be
changed several times. Each change to a file is called a delta. The model uses the total number of
deltas (ND) for an MR to predict the probability of failure.

Definition 12 (Interval): Interval (INT) is the time between the last and first delta.

Definition 13 (Experience): Average experience (EXPR) of the developer implementing the
change.

Definition 14 (Lines of Code Added): Lines of code added (LA) to represent the size of the
change to implement the MR.

Definition 15 (Adjusted Diffusion): Adjusted diffusion (ADF) is the number of distinct
subsystems modified in the ESS to implement all the MRs (features) for a product variant in a
given SPL portfolio.

The above criteria are combined in the following model to estimate the probability of failure
(P) as shown in Equation 5. αi represents the estimated coefficients for the five parameters.

)1LA(EXPINTNDADFe1

)1LA(EXPRINTNDADFeP
54321

54321

+ααααα+

+ααααα
=

•+•+•+•+•

•+•+•+•+•

 (5)

4 Method OPTESS

4.1 Overview
The idea of offering decision support arises when decisions have to be made in complex,

uncertain and/or dynamic environments. In software development and evolution, many decisions
have to be made concerning processes, products, tools, methods and techniques. From a decision-
making perspective, all these questions are confronted by different objectives, constraints, and a
huge number of variables under dynamically changing requirements. Very often, this is combined
with incomplete, fuzzy or inconsistent information about all the involved artifacts, as well as with
difficulties regarding the decision space and environment [7].

The method OPTESS has three modules as shown in Figure 1. The method requires that
segments of customers and their corresponding products be available as input. This input is
generated by our previous work [4] [30]. Another input is related to the impact of new features on
ESS’s architectural structure. Feature impact analysis techniques and tools are available to
generate this information. The interested reader is referred to [5] for a discussion on such
techniques. Figure 1 shows the workflow of COPE+ illustrated as a UML activity diagram.
Elements with identifiers Ai are the activities which take one or more input artifacts (data)
identified as Oi. An activity manipulates input artifacts to produce at least one output artifact.
These activities are arranged in three modules. The human decision maker is involved at various
stages of the decision support to analyze and update the data and results. A brief overview of the
modules is presented below.

 10

Information on impact
of features on ESS’s

Structure

O2O1

Legend Activity Input/Output Artifacts

Business-
adjustments

Structural-
adjustments

Trade-off Analysis

Human Decision Maker(1) (2)

(3)

Customers clusters
and product portfolios

Inputs

Structural-adjusted
product portfolios

Profit maximizing SPL
portfolios

Candidate product
portfolios

Technical risk
estimation

Risk estimates for
candidate product

portfolios

Cost estimation

Cost estimates for
candidate product

portfolios

Business value
estimation

Business-values of
candidate product

portfolios

Identification of non-
dominated solutions

Non-dominated
solutions

Selected product
portfolio

Determination of price structure

SIMPLE Input
Parameters &

Structure of ESS Price structure

Estimate price
structure for each

portfolio

O4

O13

O10

O11 O12

O8

O9

O6

O7

A4

A1

A5

A11

A8

A9 A10A7A6

Finalize structural
adjustments

Set SIMPLE parameters

Analyze non-dominated
solutions to select a
final product portfolio

Valuation-based adjustments

Value-adjusted SPL
portfolios

O3

A2

O5

Feature adjustments

A3

Figure 1 Workflow of OPTESS illustrated as a UML Activity diagram

Starting with an initial set of SPL portfolios, the first module of OPTESS called Business-
adjustments modifies the feature sets (by adding or removing features) of the product variants to
increase the business value of the portfolios. The output of module 1 is a set of business-adjusted
SPL portfolios.

The second module called Structural-adjustments modifies the feature sets of the product
portfolios (by adding or removing features) using the information on how these features impact
the ESS’s structure. A human decision maker is involved in this process to finalize the changes to
the feature sets. Selecting features in product variants that impact a cohesive set of subsystems in
ESS’s structure reduces the probability of failure of the system when these features are
implemented.

The first two modules generate SPL portfolios that are optimized either on the business
objective or the technical objective. The purpose of module 3 called Trade-off-analysis is to allow

 11

the decision maker to perform trade-offs between technical and business objectives. This module
takes the business-adjusted portfolios (from module 1) and structural-adjusted portfolios (from
module 2) and combines them in a set of candidate SPL portfolios. A customized risk estimation
technique is applied to determine the risk of implementing new features for all candidate product
portfolios. A product line cost estimation model is applied to determine the cost of developing the
candidate SPL portfolios. Our previous work from software versioning is applied to determine the
pricing structure, revenues and business value for each candidate SPL portfolio. A trade-off
analysis between the technical risk and business value of the candidate product portfolios
identifies the non-dominated solutions. The decision maker analyzes these suggested solutions
and selects a final solution.

4.2 Module 1: Business-adjustments

4.2.1 Valuation-based adjustment

After the initial SPL solutions are generated from our clustering method [30], we explore the
possible adjustment of the SPL solutions to find the profit-maximizing portfolios.

In the valuation-based adjustment, whether a feature should be included in certain product
variant of a SPL is adjusted according to the customer’s valuation. In our model, the customer’s
valuation of certain features is measured by their initial voting scores. The adjustment is done
according to the following three rules:

Rule 1: If customers and features can be determined by the clustering method, then features
included in each product variant correspond to the clustering results.

Rule 2: If features associated with certain customer segment are not the result of the application
of the clustering method, then features with a majority of the customer segment whose initial
votes are above a pre-defined threshold are included in the product variant.

Rule 3: Product variants which cannot satisfy the IC and IR conditions are removed from the SPL.

In order to maximize revenue from the SPL portfolio, some product variants may be combined
together to better satisfy the IC and IR conditions for optimal software pricing. In our model, we
measure all possible combinations of clusters of customers to generate various possible SPL
portfolios. In Section 5, we illustrate this process through an example case study.

4.2.2 Analyze profit-maximizing portfolios

For each possible SPL portfolio, we apply the IR and IC conditions to set the optimal prices
for each product variant. The revenue generated is a sum of revenues from all product variants in
a product line.

Because the prices are set according to customers’ valuation of features and the costs are
measured in person months, we introduce a conversion factor β to convert cost into dollar value.

Definition 16 (Conversion factor β): The conversion factor β indicates the conversion rate
between person-months and dollars.

We assume there is no variable cost associated for creation and distribution of any additional
copy of a product variant. The profit of a SPL portfolio is defined as:

Definition 17 (Estimated profit of a portfolio): Profit from the i-th SPL portfolio is measured by
revenue generated from the product line less the cost associated with creation of the SPL.

The estimated profit of the i-th SPL portfolio is measured as:

 12

Profit(i) = R(i) – β * Cost(i) (6)

4.3 Module 2: Structural-adjustments
The product portfolios given as input to the method OPTESS are generated using customers’

preference structure on product features. Each one of the new features in these product portfolios
impacts a subset of packages in the ESS’s structure. To analyze the impact of features on ESS’s
structure, we identify sub-systems in ESS’s structure. A sub-system is a cohesive group of
packages that implement a group of features. A human decision maker adds or removes features
from the product variants of initially proposed SPL portfolios according to the following rules:

Rule 1: If all the features implemented in a subsystem in ESS’s structure are present in a product
variant, then none of them is removed from the product variant.

We define θadj as the percentage of features implemented in a subsystem in the ESS’s structure
that are present in a product variant.

Rule 2: If greater than or equal to θadj of the features implemented in a subsystem in ESS’s
structure are present in a product variant, then remaining features corresponding to the same
subsystem are included in the feature set of that product variant.

Rule 3: If less than θadj of the features implemented in a subsystem in ESS’s structure are present
in a product variant then they are removed from the feature set of that product variant.

The parameter θadj is set by the human decision-maker based on the time and resources
available for the release. For a resource constrained scenario, θadj can be set high which reduces
the impact of features on ESS’s structure, consequently reducing the effort required to complete
the release. The structural adjustments decrease the diffusion of the features of product variants
(in any given SPL portfolio) consequently reducing the risk of failure. A human expert finalizes
the structural adjustments by considering other constraints, such as pre-assignment and coupling.
This activity is illustrated in Section 5.2.

4.4 Module 3: Trade-off analysis
The business-adjusted solutions from module 1 and the structural-adjusted solutions from

module 2 are combined to form a set of candidate SPL portfolios. Module 3 allows the decision
maker to perform trade-off analysis for candidate SPL portfolios.

4.4.1 Technical risk estimation

The technical risk of developing a product variant in any given SPL portfolio is calculated
using the model presented in Equation (5). In Section 5.3.1, we present an example to illustrate
the computation of the technical risk for implementing new features in an open source software
system. This activity of module 3 addresses RQ2.

4.4.2 Cost estimation

To estimate the cost of developing a candidate SPL portfolio, we apply Equation (1) of the
SIMPLE model. Out of the four cost functions of SIMPLE, we do not include the organizational
and process related costs, calculated by the function Corg(). Assuming that Corg(), is constant for
all the candidate SPL portfolios, there is no impact on the trade-off analysis. In Section 5.3.2, we
illustrate the cost estimation by evaluating the cost functions of SIMPLE for the example
software system.

 13

4.4.3 Price estimation

The prices of each product variant are set to maximize revenue from the SPL. In order to
segment customers effectively through self-selection, we impose the IR and IC constraints in
Equations (2) and (3).

 In the price estimation process, we start by setting price for the product variant with least
number of features. With the IR constraint, the initial price of the product variant is set to
maximize revenue of this market segment only. When more market segments are included, the IC
constraint is imposed to ensure customers self-select their preferred product variants.

To maximize revenue from a SPL, the price of each product variant may be higher than
valuation of some customers in the market. That means all customers are not necessarily served.

4.4.4 Business value estimation

Business value is estimated through balancing revenue and costs associated with the SPL
using Equation (6). The revenue is calculated according to Equation (4) and costs are measured in
Equation (1). This activity of module 2 addresses RQ3.

4.4.5 Identification of non-dominated solutions

In the final activity of module 3, the non-dominated SPL portfolios are identified using the
business value and technical risk estimates. Given a bi-objective optimization problem F(x), x* is
said to be a Pareto-optimal solution (or a non-dominated solution) of the bi-objective problem if
x*∈ X and there does not exist any other solution x which dominates x* when the values of both
the objectives are considered together.

The bi-objective optimization problems typically present a set of compromise optimal values,
and these optimal values are called Pareto-optimal solutions if there are no other solutions that
are superior to them when the two objectives are considered. These set of solutions are referred to
as non-dominated. Multiple Pareto-optimal solutions allow trade-offs between the technical risk
and business values of the candidate SPL portfolios. The human decision maker analyzes the non-
dominated solutions and ultimately selects one of them as the strategy for enhancing the ESS. In
Section 5.3.4, this is explained through application of OPTESS on an open source text editing
software system. This activity addresses RQ1.

5 Illustrative Case Study

5.1 Overview and context
We designed an illustrative case study to show how business and technical objectives are

integrated to determine the desired SPL. Our method is initially evaluated (in the sense of “proof-
of-concept”) using an open source software project. jEdit (www.jedit.org) is a popular open-
source text editing software system. Its user-base is steadily increasing with frequent feedback
and feature requests on the project website [31]. Observing the increasing user-base and
continuous evolution of the jEdit system, we selected it to evaluate method OPTESS. The results
are based on the jEdit version 4.0. A total of nine feature requests as shown in Table 1 are used
for the illustrative case study [31].

 14

Table 1 jEdit features

Feature Name Functionality Effort Estimate
(person-months)

DC Domain Concepts 22
UI User Interface 12
RE Regular Expressions 8
TB Text Buffers 7
DW Dockable Windows 4
BS Beanshell Scripting 6
XR XML Reader 2
BA Bytecode Assembler 1
TZ Tar and Zip Archives 3

Using the preferences of ten hypothetical customers on these features, a clustering algorithm
generated seven SPL portfolios as shown in Table 2 below. The details of the cluster analysis for
this case study are available on the first author’s website [32]. Note that P(0) represents the single
product option for the next release.

Table 2 Initial product portfolios

Portfolios Product
Variants Feature Sets

P(0) - All 9 features

P(1) p(1,1) DC, UI, DW, BS, XR, BA
p(1,2) All 9 features

P(2)
p(2,1) DC, UI, DW, BS, XR, BA
p(2,2) DC, UI, RE, DW, BA
p(2,3) All 9 features

P(3)

p(3,1) DC, UI, DW, BS, XR, BA,TZ
p(3,2) DC, UI, TB, XR
p(3,3) DC, UI, RE, DW, BA
p(3,4) All 9 features

P(4)

p(4,1) DC, UI, BS, TZ
p(4,2) DC, UI, XR
p(4,3) DC, UI, RE, DW, BA
p(4,4) All 9 features

P(5)
p(5,1) DC, UI, BS, TZ
p(5,2) DC, UI, XR
p(5,3) DC, UI, RE, DW, BA

P(6)
p(6,1) DC, UI, BS, BA, TZ
p(6,2) DC, UI, XR
p(6,3) DC, UI, RE, DW, BA

P(7) p(7,1) DC, UI

5.2 Module 1: Business-adjustments
In this module, we apply the three rules in Section 4.2.1 for the adjustment of the initial SPL

solutions. For the features that are not the result of the application of the clustering method, we
include features with no less than 50 percent of customers whose valuation is above the threshold
(6 in our case) in the product variant for the specified SPL portfolio. Any product variants that
contradict with the IC and IR conditions are removed from the SPL. The adjusted product
portfolios are shown in Table 3 below:

 15

Table 3 Business adjustments to initial product portfolios

Portfolios Product
Variants Feature Sets Feature Removals and Additions

P(8) p(8,1) DC, UI, DW, BS, BA, TZ Combine p(3,1) with p(3,3)
p(8,2) All 9 features Combine p(3,2) and p(3,4)

P(9)
p(9,1) DC, UI, DW, BS, XR, BA,TZ Same as p(3,1)
p(9,2) DC, UI, TB, DW, BS, XR, BA Combine p(3,2) with p(3,3)
p(9,3) All 9 features Same as p(3,4)

P(10) p(10,1) DC, UI, TB, DW, BS, XR, BA Combine p(4,2) with p(4,3)
p(10,2) DC, UI, DW, BS, XR, BA,TZ Combine p(4,1) with p(4,4)

P(11)
p(11,1) DC, UI, BS, TZ Same as p(4,1)
p(11,2) DC, UI, TB, DW, BS, XR, BA Combine p(4,2) with p(4,3)
p(11,3) All 9 features Same as p(4,4)

P(12) p(12,1) DC, UI, TB, DW, BS, XR, BA p(6,2) plus TB, DW, BS, BA
p(12,2) DC, UI, RE, TB, DW, BS, BA, TZ Combine p(6,1) with p(6,3)

5.3 Module 2: Structural-adjustments
In this module, the human decision maker gains information related to the impact of the new

features on ESS’s structure. jEdit v4.0 has thirty source code packages [31] [32]. Domain experts
have identified four subsystems in jEdit’s structure [32]. Each subsystem consists of a group of
packages and implements a subset of features. Table 4 lists the features that are implemented in
each subsystem. The decision maker updates the feature sets of the product variants in the seven
initially proposed SPL portfolios such that each product variants contains all the features
corresponding to a given subsystem.

Table 4 Subsystems in jEdit’s system structure

Subsystem Corresponding Features

1 DC
2 UI, XR, TB
3 RE, TZ, DW
4 BS, BA

Table 5 shows the updates in the feature set of each product variant using the value of θadj
equal to 50%. For example, for product variant p(1,1) of portfolio P(1), feature DW was removed
because the other features (TZ and RE) implemented by the subsystem 3 were not present in the
feature set of p(1,1) (Section 4.3, Rule 3). TB was included in p(1,1) to complete the feature
group corresponding to subsystem 2 (Section 4.3, Rule 2). The finalized structural-adjusted
portfolios are P(13) to P(18) as shown in the Table A.1 (Appendix A) and Table B.1 (Appendix
B).

Table 5 Structural adjustments to initial product portfolios

Portfolios Product
Variants Feature Sets Feature Removals and Additions

P(0) - All 9 features -

P(1) p(1,1) DC, UI, DW, BS, XR, BA, TB Removed DW and included TB
p(1,2) All 9 features -

P(2)
p(2,1) DC, UI, DW, BS, XR, BA, TB Removed DW and included TB
p(2,2) DC, UI, RE, DW, BA, TZ Removed UI, BA and included TZ
p(2,3) All 9 features -

 16

Portfolios Product
Variants Feature Sets Feature Removals and Additions

P(3)

p(3,1) DC, UI, DW, BS, XR, BA,TZ, TB, RE Included TB, RE
p(3,2) DC, UI, TB, XR -
p(3,3) DC, UI, RE, DW, BA, TZ Removed UI, BA and included TZ
p(3,4) All 9 features -

P(4)

p(4,1) DC, UI, BS, TZ, BA Removed UI, TZ and included BA
p(4,2) DC, UI, XR, TB Included TB
p(4,3) DC, UI, RE, DW, BA, TZ Removed UI, BA and included TZ
p(4,4) All 9 features -

P(5)
p(5,1) DC, UI, BS, TZ,, BA Removed UI, TZ and included BA
p(5,2) DC, UI, XR, TB Included TB
p(5,3) DC, UI, RE, DW, BA, TZ Removed UI, BA and included TZ

P(6)
p(6,1) DC, UI, BS, BA, TZ Removed UI, TZ
p(6,2) DC, UI, XR, TB Included TB
p(6,3) DC, UI, RE, DW, BA, TZ Removed UI, BA and included TZ

P(7) p(7,1) DC, UI Removed UI

5.4 Module 3: Trade-off analysis
The third module of OPTESS performs a trade-off analysis for all the candidate SPL

portfolios. The candidate SPL portfolios include the initially proposed SPL portfolios given as
input to OPTESS, the business-adjusted SPL portfolios, the technical adjusted SPL portfolios and
the single software product. The trade-off is performed between two objectives: (i) minimizing
the technical risk of failure due to implementation of features and (ii) maximizing the business
values of the SPL portfolio.

5.4.1 Technical risk estimation

The technical risk of failure is calculated using Equation (5). The results are shown in Table
A.1 as probability of failure of the system when features are implemented in the ESS’s structure.
For the jEdit case study we have access to data for only one of the parameters i.e. adjusted
diffusion (ADF). The other four parameters in Equation (5) were ignored due to non-availability
of data. Because of this, we are not able to generate the values for the coefficients αi. Therefore,
for this illustration we have applied the value of the coefficient α1 equal to 0.41 as suggested in
[16]. It can be seen that the higher the number of subsystems impacted in the ESS’s structure
(reflecting higher diffusion), the higher the probability of failure. This activity of module 3,
addresses RQ 2.

5.4.2 Cost estimation

The SIMPLE cost estimation model is applied (as explained in Section 3.1) to calculate the
cost of developing the candidate SPL portfolios. The cost to develop the unique part of each
candidate SPL portfolio is estimated by identifying the features that are offered by only one of the
product variants. These features are not developed for reuse, and consequently the cost to
implement them is less than for features that are shared by multiple product variants. The
SIMPLE model does not provide details on how a particular cost function is estimated. As
explained in Sections 2.3 and 3.1, we have applied an analogy-based effort estimation technique
(AQUA) to estimate the function Cunique(). The effort estimate for implementing each feature of
the jEdit software system is given in Table 1.

The development of shared features (determined by the Ccab() function), requires more effort.
The reason is that these features are shared by multiple product variants requiring implementation

 17

of variability mechanisms. The higher the level of variability amongst the product variants, the
higher is the level of effort to develop them. If a feature is shared across all the product variants in
a SPL portfolio, the effort estimate by AQUA is adjusted. This adjustment is based on the number
of product variants that are sharing this feature and the number of packages being impacted by the
feature in the ESS’s structure. The interested reader is referred to [33] for detailed effort
estimation results for shared features of each candidate SPL portfolio.

Adaptation of a shared feature for use in a specific product variant requires additional effort.
This effort is reflected in the results of the function Creuse(). The actual value of the function
Creuse() depends on how many product variants reuse the shared feature. Results for the function
Creuse() for each candidate SPL portfolio in the jEdit case study are presented in [33]. The final
cost estimates by application of the SIMPLE model for the single product and 18 candidate SPL
portfolios are listed in Table B.1 (Appendix B). As mentioned earlier, Corg() cost function of
SIMPLE is not applied in this case study.

5.4.3 Price and business value estimation

Prices are determined using the IR and IC constraints in Equations (2) and (3). The customer’s
valuation of a product variant is calculated as the sum of all the feature voting scores that are no
less than the threshold (6 in our case). Prices are set so that customers self-select their favorite
product variants. Revenue is calculated by Equation (4) and business value is measured by
Equation (6). To simplify the calculation of business value, we set the conversion factor β	 as 1.

Here we take P(1) as an example to show how the business value of a specified SPL is
calculated. Firstly, from the clustering results, we get that p(1,1) is designed for customers 1, 2, 3,
4, 5, 8, 9 and 10. Each customer’s valuation of p(1,1) is calculated as 29, 37, 44, 35, 40, 20, 32
and 32. To maximize revenue generated from p(1,1), we set price as 29. Because customer 8’s
valuation for p(1,1) is 20, which is less than 29, according to the IR constraints, customer 8 will
not purchase p(1,1). Accordingly, p(1,2) is designed for customers 6 and 7 with valuation 69 and
70. In order to encourage customers 6 and 7 to self-select p(1,2) instead of p(1,1), the IC
constraints are applied so that the price of p(1,2) is set as 53. With this price schedule, customers
1, 2, 3, 4, 5, 9 and 10 purchase p(1,1) at price 29 and customers 7 and 7 purchase p(1,2) at price
53. Customer 8 does not purchase any product variant. The total revenue generated is 309. Using
equation (1), we get the total cost associated with P(1) is 58.6. Thus, the total business value for
P(1) is calculated as 250.4. Table B.1 (Appendix B) lists the revenues and business values of all
the candidate SPL portfolios.

5.4.4 Identification of non-dominated solutions

The decision maker is presented the business values and technical risk estimates for all the
candidate product portfolios. Using this information, the non-dominated solutions can be
identified. For the jEdit example, the portfolios P(4), P(11) and P(16) are the non-dominated
solutions as identified in Figure 2. The decision maker analyzes the non-dominated solutions and
selects the one of them.

Product portfolio P(4) is one of the initial product portfolios generated by cluster analysis
using customers’ preferences on product features. This product portfolio does not have the
highest business value amongst all the solutions nor the lowest technical risk. However, when
both the objectives are considered together, it performs better than all the candidate product
portfolios. The other two non-dominated solutions are the optimized solutions. Portfolio P(11)
was optimized by performing business related adjustments; consequently it has the highest
business value. Portfolio P(16) is optimized on technical objectives and thus has the lowest
technical risk amongst all the candidate product portfolios.

 18

Non-dominated Product Portfolios

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Technical Risk

B
us

in
es

s
V

al
ue

Figure 2 Non-dominated product portfolios maximizing the business value objective and minimizing the

technical risk objective

6 Applicability and Limitations

6.1 Applicability
Method OPTESS addresses the complex problem of evolving a software product facing

feature demands of a diverse customer-base. The goal of OPTESS is to propose a portfolio of
non-dominated solutions to the decision maker. These solutions can become a starting point for
initiating discussions amongst project stakeholders.

In our previous work, we proposed methods that can be applied for this decision problem of
enhancing a single software product into a product line with different levels of data availability.
In [30], we proposed method COPE (Customer Oriented Product Evolution) which requires
information on customers’ preference structure on product features to determine segments of
customers and suggests candidate SPL portfolios. A human decision maker evaluates the
candidate SPL portfolios using her expert judgment and selects a suitable portfolio for enhancing
the ESS. The decision maker can also initiate further iterations of COPE by changing model
settings to generate more solutions.

Method COPE+ [5] extends COPE by including impact analysis of the features on the ESS’s
architecture. The decision maker is given information on the level of impact of candidate SPL
portfolios on the ESS’s architectural components. COPE+ also performs behavioral comparisons
of candidate SPL portfolios and the ESS to rank the candidate solutions.

Method OPTESS brings in economic considerations to rank the candidate SPL portfolios
using the technical and business objectives. This, however, requires more sophisticated data
related to the impact of features on system structure, and effort estimates for the implementation
of features and pricing structure. Given such data requirements, we recommend the application of
OPTESS for organizations being at least at CMMI level 3 where measurement and analysis
practices are followed [34]. Tool support for the method OPTESS is also planned to automate
some of the activities.

P(11) P(4)

P(16)

 19

6.2 Assumptions and Threats to Validity
The assumptions and threats to validity of the work presented here are listed below:

(1) The risk estimates for the candidate SPL portfolios are calculated using data for only
one of the parameters in the Mockus and Weiss’s model [16]. This is a threat to the
validity of the conclusions.

(2) Real customers were not involved for eliciting preferences on features of jEdit.
Therefore, no feedback is available to determine the level of acceptance for the results
generated by OPTESS.

(3) For the jEdit system, we used feature impact analysis results from [32] which can be a
threat to the validity of conclusions.

(4) For revenue estimation, we assumed that each customer purchases only one product. It
may not always be true.

(5) SPLs are a long term investment. Therefore, the return on investment should include
analysis over a longer period of time to determine costs and benefits. In this work we
analyzed the return on investment for a single release. This is a limitation of our
method.

7 Conclusions and Future Work
Method OPTESS brings together the concepts and techniques from economics and software

engineering to evaluate SPL portfolios for a given evolution scenario. The goal is to provide a
decision support framework rather than focus on specific technical and economic techniques. The
cost estimation model, risk estimation model and customer valuation technique applied in this
work are examples that show how trade-off analysis can be performed for selecting a candidate
SPL portfolio.

In this work we highlight the interplay between economic and technical aspects of the SPL
design. From the economic side, we apply the widely adopted value-based pricing mechanism to
estimate price and revenue in a self-selection market. The SIMPLE cost model is applied to
estimate the effort for developing candidate SPL portfolios. On the technical side, a risk
estimation technique is applied to determine the probability of failure of the system when new
features are implemented. To balance both the economic and technical objectives, three non-
dominated product portfolios were proposed out of eighteen candidate SPL portfolios.

Ahmed et al., have investigated how business factors influence success of SPLs [36]. They
argued that strategic planning is one of the key factors in business performance of a SPL. An
important component of strategic planning is market orientation i.e., identification of customer
segments and a plan to target them. There are other factors that are equally important e.g.,
competitors in each segment, order of entry in the market etc. OPTESS addresses a part of this
strategic planning. Other techniques such as those from marketing can be applied to bring in
additional criteria for evaluation of the candidate SPL portfolios.

This research presents initial results of our method on an open source text editing software
system. In the future, we plan to conduct a sensitivity analysis to identify the degree of influence
of technical and economic factors on the results generated by OPTESS. Further case studies are
planned with real customers to determine the level of acceptance of the results.

 20

Acknowledgements
Guenther Ruhe would like to thank the Natural Sciences and Engineering Research Council of

Canada (Discovery Grant 250343-07), and Barrie R. Nault would like to thank the Social
Sciences and Humanities Research Council of Canada (Standard Research Grant), for financial
support of this research.

References
1. P. Clements and L. Northrop, Software product lines: Practices and patterns, 3rd Ed., Addison-Wesley

Professional, 2001.

2. F. Linden, K. Schmid, and E. Rommes, Software product lines in action: The best industrial practice in
product line engineering, Springer-Verlag, New York, USA, 2007.

3. P. Clements, L. Jones, J. McGregor, L. Northrop, Getting there from here: A roadmap for software

product line adoption, Communications of the ACM, 49(12), 2006, pp. 33-36.

4. M. Ullah, G. Ruhe, and V. Garousi, Towards design and architectural evaluation of product variants. A

case study on an open source software system. In: Proceedings of the 21st International Conference on
Software Engineering and Knowledge Engineering, USA, 2009, pp. 141-146.

5. M. Ullah, G. Ruhe, and V. Garousi, Decision support for moving from a single product to a product

portfolio in evolving software systems, Elsevier Journal of Systems and Software, 83(2010) pp. 2496-
2512.

6. A. Helferich, K. Schmid, and G. Herzwurm, Product management for software product lines: An

unsolved problem? In: Communications of the ACM, 49(12), 2006, pp. 66-67.

7. G. Ruhe, Software engineering decision support – A new paradigm for learning software

organizations. Advances in Learning Software Organization. Lecture Notes in Computer Science Vol.
2640, 2003, Springer, pp. 104-115.

8. E. Turban, J. Aronson, and T. Liang, Decision support systems and intelligent systems. Prentice Hall,

2004.

9. H. Rittel, and M. Webber, Planning problems are wicked problems. In: Cross N. (Ed.) Developments

in design methodology. Wiley, Chichester, 1984, pp. 135-144.

10. P. Carlshamre, Release planning in market-driven software product development. Requirements

Engineering Journal, vol. 7(3), 2002, pp.139-151.

11. C. Fritsch, and R. Hahn, Product line potential analysis, Proceedings of the 8th International Software

Product Line Conference, LNCS 3154, 2004, pp. 228-237.

12. K. Schmid and I. John, Developing, validating, and evolving an approach to product line benefit and

risk assessment, In: Proceedings of the 28th Euromicro Conference, Germany, 2002, pp. 272-283.

13. K. Schmid, A comprehensive product line scoping approach and its validation, In: Proceedings of the

24th International Conference on Software Engineering, ACM, New York, USA, 2002, pp. 593 – 603.

14. L. Bass, P. Clements, and R. Kazman, Software architecture in practice, 2nd Edition, Addison-Wesley

Professional.

15. B. Boehm, Software risk management: Principles and practices, IEEE Software vol. 8(1), 1991, pp. 32-

41.

 21

16. A. Mockus and D. Weiss, Predicting risk of software changes, Bell Labs Technical Journal, 5(2), 2000,

pp. 169-180.

17. B. Boehm, Software engineering economics, IEEE Transactions on Software Engineering, vol. 10(1),

1984, pp. 4-21.

18. L. Northrop and P. Clements, A framework for software product line practice version 5.0, Software

Engineering Institute, Pittsburgh, USA.

19. B. Boehm, A. Brown, R. Madachy, and Y. Yang, A Software Product Line Life Cycle Cost Estimation

Model, In: Proceedings of the 2004 International Symposium on Empirical Software Engineering,
ISESE'04, 2004, pp. 156-164.

20. H. In, J. Baik, S., Kim, Y, Yang and B. Boehm, A quality-based cost estimation model for the product

line lifecycle, Communications of the ACM, vol. 49(12), 2006, pp. 85-88.

21. G. Boeckle, P. Clements, J. McGregor, D. Muthig and K. Schmid, A cost model for software product

lines. Lecture Notes in Computer Science, vol. 3014, 2004, pp. 310-316.

22. L. Angelis and I. Stamelos, A simulation tool for efficient analogy based cost estimation. Empirical

Software Engineering 5(2000), pp. 35-68.

23. M. Ruhe, R. Jeffery and I. Wieczorek, Cost estimation for web applications, Proceedings of the 25th

International Conference on Software Engineering, Oregon, USA, pp. 285-294.

24. L. Angelis, I. Stamelos and M. Morisio, Building a software cost estimation model based on

categorical data, Proceedings of the 7th International Symposium on Software Metrics, UK, 2001, pp.
4-15.

25. J. Li, G. Ruhe, A. Al-Emran, and M. Richter, A flexible method for software effort estimation by

analogy, Empirical Software Engineering, 12(2007), pp. 65-106.

26. C. Shapiro and H. Varian, Information rules: A strategic guide to the network economy, Harvard

Business School Press, 1999.

27. K. Moorthy, Market segmentation, self-selection, and product line design, Marketing Science, vol.3(4),

1984, pp. 288-307

28. A. Sundararajan, Nonlinear pricing of information goods, Management Science, vol. 50(12), pp. 1660-

1673.

29. X. Wei and B. Nault, Product differentiation and market segmentation of information goods,

Discussion Paper at the Workshop on Information Systems and Economics, Irvine, CA, 2005.

30. M. Ullah, and G. Ruhe, One product versus product line: Decision support based on customer needs

analysis. In: Proceedings of the 11th International Conference on Software Product Lines, vol. 2, 2007,
pp. 174-183.

31. jEdit Project Website., 2009. http://sourceforge.net/projects/jedit.

32. A. Kuhn, S. Ducasse, and T. Girba, 2007. Semantic clustering: Identifying topics in source code.

Information and Software Technology, vol. 49(3), pp. 230-243.

33. http://pages.cpsc.ucalgary.ca/~ullah/jEditCaseStudy.pdf

 22

34. http://www.sei.cmu.edu/cmmi/tools/dev/index.cfm (Accessed July 5, 2010)

35. J. Bosch, K. Jackson, C. Krueger, J. McGregor, and A. Nolan, How to maximize business return of

SPL, Goldfish Bowl Panel, 13th International Software Product Line Conference, August 2009, San
Francisco, USA.

36. F. Ahmed and L, Capretz, Managing the business of software product line: An empirical investigation

of key business factors, Information and Software Technology vol. 49(2007), pp. 194-208.

37. D. Muthig, J. McGregor, and P. Clements, Predicting product line payoff with SIMPLE, Tutorial in the

11th International Software Product Line Conference, Japan, 2007.

38. A. Birk, G. Heller, I. John, K., Schmid, T. Maben, and K. Muller, Product line engineering: The state

of the practice, IEEE Software, November/December, 2003, pp. 52-60.

Appendix A

Table A.1 Probability of failure estimates for the candidate SPL portfolios

Portfolios Product
Variants Feature Sets Subsystems

Impacted

Probability of
Failure of Product

Variants

Probability of
Failure of Product

Portfolios
P(0) - All 9 features 4 - 0.6548

P(1) p(1,1) DC, UI, DW, BS, XR, BA 4 0.65	 0.43 p(1,2) All 9 features 4 0.65	

P(2)
p(2,1) DC, UI, DW, BS, XR, BA 4 0.65	

0.28 p(2,2) DC, UI, RE, DW, BA 4 0.65	
p(2,3) All 9 features 4 0.65	

P(3)

p(3,1) DC, UI, DW, BS, XR, BA,TZ 4 0.65	

0.18 p(3,2) DC, UI, TB, XR 4 0.65	
p(3,3) DC, UI, RE, DW, BA 4 0.65	
p(3,4) All 9 features 4 0.65	

P(4)

p(4,1) DC, UI, BS, TZ 4 0.65	

0.13 p(4,2) DC, UI, XR 2 0.46
p(4,3) DC, UI, RE, DW, BA 4 0.65	
p(4,4) All 9 features 4 0.65	

P(5)
p(5,1) DC, UI, BS, TZ 4 0.65	

0.20 p(5,2) DC, UI, XR 2 0.46
p(5,3) DC, UI, RE, DW, BA 4 0.65	

P(6)
p(6,1) DC, UI, BS, BA, TZ 4 0.65	

0.20 p(6,2) DC, UI, XR 2 0.46
p(6,3) DC, UI, RE, DW, BA 4 0.65	

P(7) p(7,1) DC, UI 2 0.46 0.46

P(8) p(8,1) DC, UI, DW, BS, BA, TZ 4 0.65	 0.43 p(8,2) All 9 features 4 0.65	

P(9)
p(9,1) DC, UI, DW, BS, XR, BA,TZ 4 0.65	

0.28 p(9,2) DC, UI, TB, DW, BS, XR, BA 4 0.65	
p(9,3) All 9 features 4 0.65	

P(10) p(10,1) DC, UI, TB, DW, BS, XR, BA 4 0.65	 0.43 p(10,2) DC, UI, DW, BS, XR, BA, TZ 4 0.65	

 23

Portfolios Product
Variants Feature Sets Subsystems

Impacted

Probability of
Failure of Product

Variants

Probability of
Failure of Product

Portfolios

P(11)
p(11,1) DC, UI, BS, TZ 4 0.65	

0.28 p(11,2) DC, UI, TB, DW, BS, XR, BA 4 0.65	
p(11,3) All 9 features 4 0.65	

P(12) p(12,1) DC, UI, TB, DW, BS, XR, BA 4 0.65 0.43 p(12,2) DC, UI, RE, TB, DW, BS, BA, TZ 4 0.65

P(13) p(13,1) DC, UI, BS, XR, BA, TB 3 0.56 0.36 p(13,2) All 9 features 4 0.65	

P(14)
p(14,1) DC, UI, BS, XR, BA, TB 3 0.56

0.17 p(14,2) DC, RE, DW, TZ 2 0.46
p(14,3) All 9 features 4 0.65	

P(15)
p(15,1) DC, UI, TB, XR 2 0.46

0.14 p(15,2) DC, RE, DW, TZ 2 0.46
p(15,3) All 9 features 4 0.65	

P(16)

p(16,1) DC, BS, BA 2 0.46

0.06 p(16,2) DC, UI, XR, TB 2 0.46
p(16,3) DC, RE, DW, TZ 2 0.46
p(16,4) All 9 features 4 0.65	

P(17)
p(17,1) DC, BS, BA 2 0.46

0.09 p(17,2) DC, UI, XR, TB 2 0.46
p(17,3) DC, RE, DW, TZ 2 0.46

P(18) p(17,1) DC 1 - 0.36

Appendix B

Table B.1 Cost, price, revenue and business value estimates for the candidate SPL portfolios

Portfolios Product
Variants Feature Sets Cost Price

Revenue per
product
variant

Revenue per
portfolio

Business
value

P(0) - All 9 features 30 37 37*8 296 266

P(1) p(1,1) DC, UI, DW, BS, XR, BA 62.4 29 29*7=203 309 246.6 p(1,2) All 9 features 53 53*2=106

P(2)
p(2,1) DC, UI, DW, BS, XR, BA 61.2 29 29*5=145

313 251.8 p(2,2) DC, UI, RE, DW, BA 31 31*2=62
p(2,3) All 9 features 53 53*2=106

P(3)

p(3,1) DC, UI, DW, BS, XR, BA,TZ 62.2 28 28*4=112

300 237.8 p(3,2) DC, UI, TB, XR 21 21*2=42
p(3,3) DC, UI, RE, DW, BA 30 30*2=60
p(3,4) All 9 features 43 43*2=86

P(4)

p(4,1) DC, UI, BS, TZ 62.2 25 25*3=75

347 284.8 p(4,2) DC, UI, XR 22 22*3=66
p(4,3) DC, UI, RE, DW, BA 41 41*2=82
p(4,4) All 9 features 62 62*2=124

P(5)
p(5,1) DC, UI, BS, TZ 59.9 25 25*3=75

261 201.1 p(5,2) DC, UI, XR 22 22*3=66
p(5,3) DC, UI, RE, DW, BA 30 30*4=120

P(6)
p(6,1) DC, UI, BS, BA, TZ 59.9 28 28*2=56

244 184.1 p(6,2) DC, UI, XR 21 21*4=84
p(6,3) DC, UI, RE, DW, BA 26 26*4=104

P(7) p(7,1) DC, UI 23 15 15*9=135 135 112

P(8) p(8,1) DC, UI, DW, BS, BA, TZ 61.2 28 28*6=168 316 254.8 p(8,2) All 9 features 37 37*4=148

 24

Portfolios Product
Variants Feature Sets Cost Price

Revenue per
product
variant

Revenue per
portfolio

Business
value

P(9)
p(9,1) DC, UI, DW, BS, XR, BA,TZ 65.1 28 28*4=112

310 244.9 p(9,2) DC, UI, TB, DW, BS, XR, BA 28 28*4=112
p(9,3) All 9 features 43 43*2=86

P(10) p(10,1) DC, UI, TB, DW, BS, XR, BA 62.4 28 28*5=140 280 217.6 p(10,2) DC, UI, DW, BS, XR, BA, TZ 28 28*5=140

P(11)
p(11,1) DC, UI, BS, TZ 62.5 25 25*3=75

366 303.6 p(11,2) DC, UI, TB, DW, BS, XR, BA 37 37*5=185
p(11,3) All 9 features 53 53*2=106

P(12) p(12,1) DC, UI, TB, DW, BS, XR, BA 57.5 37 21*4=84 276 218.5 p(12,2) DC, UI, RE, TB, DW, BS, BA, TZ 48 48*4=192

P(13) p(13,1) DC, UI, BS, XR, BA, TB 64.8 30 30*7=210 318 253.2 p(13,2) All 9 features 54 54*2=108

P(14)
p(14,1) DC, UI, BS, XR, BA, TB 58.6 30 29*5=145

303 244.4 p(14,2) DC, RE, DW, TZ 25 25*2=50
p(14,3) All 9 features 54 54*2=108

P(15)
p(15,1) DC, UI, TB, XR 58.6 28 28*2=56

282 223.4 p(15,2) DC, RE, DW, TZ 25 25*2=50
p(15,3) All 9 features 44 44*4=176

P(16)

p(16,1) DC, BS, BA 60.8 14 14*3=42

282 221.2 p(16,2) DC, UI, XR, TB 22 22*3=66
p(16,3) DC, RE, DW, TZ 25 25*2=50
p(16,4) All 9 features 62 62*2=124

P(17)
p(17,1) DC, BS, BA 58.6 14 14*3=42

208 149.4 p(17,2) DC, UI, XR, TB 22 22*3=66
p(17,3) DC, RE, DW, TZ 25 25*4=100

P(18) p(17,1) DC 22 6 6*10=135 60 38

