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performance of the supply chain. Through an industry case, a custom window production
firm, we show how to apply the proposed DPS when products are complex. We also develop
a method to adaptively estimate the firm’s available capacity, the number of future arrivals
and the distributions of the customers’ willingness to pay and impatience factor. The simu-
lation result shows that, when multiple distribution parameters are unknown, the proposed
parameter estimating method results in estimates close to the true values.
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1. Introduction

Constrained by global competition in prices and costs, the large firms have limited incen-
tives to provide high-variety customization (Cavusoglu et al. 2007), which becomes the core
competence of local small or medium sized enterprises (SMEs). One-of-a-kind production
(OKP) is a strategy that allows local firms to provide highly customized products at an ef-
fective production rate. OKP features a “once” successful approach for product development
and production according to specific customer requirements, and accordingly no prototype
or specimen is made (Tu et al. 2000). The firm usually does not keep inventory of some
inputs (e.g., parts) and only makes orders on demand. As a consequence, this requires that
the entire supply chain provides fast and reliable delivery.

We study the OKP supply chain, in which the customers of an OKP firm are also OKP
firms. An OKP supply chain is characterized by SMEs, batches of orders that are small
or just one item, make-to-order production, downstream firms that cannot guarantee future
orders to upstream firms, and detailed requirements that change from order to order. Because
of these features, it is difficult for firms within the same OKP supply chain to form a reliable
cooperative relationship through contract or integration based on revenue and information
sharing (Giannoccaro and Pontrandolfo 2004, Disney et al. 2008, Kelle et al. 2009). In this
work, we examine supply chain coordination without revenue and information sharing.

Because it is usually the case that customers in a supply chain are heterogenous in
leadtime requirements, different types of customers should be treated with different priority
to realize coordination. However, as an OKP firm usually receives discrete orders which
arrive sequentially, then the problem is to allocate capacity to customers from different
priority classes. That is, whether to allocate capacity to the current customer or save it
for future arrivals that might be from higher priority classes and hence generate higher
profits (Keskinocak and Tayur 2004). In the literature, a well-accepted method to solve
this problem is price differentiation between priority classes. The research in pricing under
sequentially arriving customers starts from the pricing problem in a priority queue. That
is, the customers pay different prices for different positions within the queue, but the firm
does not guarantee the due dates e.g., (Kleinrock 1967, Adiri and Yechiali 1974, Mendelson
and Whang 1990, etc). A detailed review of the research on priority pricing can be found in
Bitran and Caldentey (2003).

We focus on the case where some customers have strict requirements on leadtime guaran-
tee while others do not. In this case the firm offers two types of orders: due-date-guaranteed
(G-order) and due-date-unguaranteed (U-order), and only the G-orders are promised due-
date delivery. We compare two pricing strategies: a dynamic pricing strategy (DPS) and a
constant pricing strategy (CPS). G-orders and U-orders are priced differently, but in DPS
the firm dynamically changes the price for each type of order to maximize its profit. That is,
the price quotes to a customer are also determined by its arrival time. We analyze how the
supply chain benefits when each firm prices each order accounting for the order’s arrival time
together with the firm’s production capacity and schedule. To match the DPS for larger-
scale problems, we also introduce a periodic pricing strategy (PPS), which is a compromise
between the features of DPS and CPS. Our results suggest a promising approach to integrate
(or coordinate) a two-echelon supply chain with no dominant echelon.

A number of articles on dynamic pricing can be found in the literature (Yano and Gilbert
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2005), but most research focus on pricing in make-to-stock (MTS) production, e.g., Transchel
and Minner (2009), Ray et al. (2005), etc. In contrast, we use the Bellman equation (Bellman
1957) to compute the price quote for OKP make-to-order firms. The earliest work we have
found on pricing using Bellman equations is Kinacaid and Darling (1963), and more recent
studies used similar methods to model supply chain dynamics, e.g., Stadje (1990), Gallego
and Ryzin (1994) and Zhao and Lian (2011),etc. Using numerical analysis, we compare
price quotes under the two different pricing strategies. The results show that in large-
scale problems the CPS prices can be a good approximation for DPS prices. We explain the
application of the proposed DPS through an industrial case from a custom window producing
firm. In the case study, we propose a method to evaluate the firm’s available capacity
and future order arrivals, which we require to compute prices. We chose a custom window
manufacturer for case study because it is a typical OKP firm whose products have hierarchical
structures and are processed through multiple production lines. The DPS studied in this
work can also be applied in other OKP firms where leadtime is a factor of quality but the
leadtime is constrained by the firm’s capacity, e.g. molding companies, high-tech component
companies, or service providers such as transportation companies.

We also develop a set of practical parameter estimation methods for our proposed pricing
strategy. In the literature, most authors assume that the distribution of the customers’
“impatience factors”, which can be defined as how much it costs a customer for each time
unit that the lead time of its order is increased, is exogenous and known by the firm. Based on
this distribution of impatience factors, optimal prices are computed following the discipline
of “third degree price discrimination”(Perloff 2009). However, in practice, this impatience
factor is usually hard to measure or obtain. In the supply chain management literature the
distribution of random variables are usually obtained from a learning process. For example,
Chen and Plambeck (2008) develop a learning method to obtain the probability of a customer
choosing a substitute, and Tomlin (2009) uses a Bayesian learning process to dynamically
update the supplier’s yield distribution. In our model, we develop a maximum-likelihood-
estimation (MLE) based learning method to estimate the distribution of the customer’s
willingness to pay (WTP) as well as the distribution of the impatience factor. There are
also several articles that focus on estimating the distribution of the customer’s WTP. Bishop
and Heberlein (1979), Hanemann (1984) and Cameron (1988) proposed methods to estimate
the mean of the customer’s WTP when the distribution type is known. Kriström (1990)
studied the case where the distribution type is not known and proposed a non-parametric
estimator of the distribution of the customer’s WTP, which requires larger sample sizes. Due
to sample size limitations in OKP supply chains, we extend the previous literature and study
the case where the distribution type is known, but the distribution parameters, such as the
mean and variance of a normal distribution, must be estimated. This is realistic when the
firm has some rough information on its customers’ WTP distribution. As for the customer’s
impatience factor, we have not found any work studying the estimation of its distribution.

Our article is organized as follows. In Section 2, we describe the problem and define
the notation and assumptions. In Section 3 a dynamic pricing method is presented with a
polynomial algorithm to find the optimal solution. In Section 4, a CPS is presented. In
Section 5, we compare the firm and its customers’ welfare under the two different pricing
strategies. In Section 6, we propose a method to estimate parameters required to compute
the dynamic prices. In Section 6.1, we present an industrial case to show how to evaluate the
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firm’s available capacity and future customer arrivals, while in Section 6.2, a learning process
is designed to estimate the distribution of the a customer’s WTP and impatience factor. In
Section 7, we discuss the management insight of this research by referring a practical case
study. Section 8 contains final remarks and a summary of future work.

2. Notation and Assumptions

We study an OKP firm which accepts two types of orders, G-orders and U-orders. These
orders are for the next production period as shown in Figure 1. Our problem is to decide
the optimal price quote for each type of order. Every newly received G-order is guaranteed
delivery by the end of the next period. To guarantee the promised due date of the G-
orders, the firm dispatches a higher priority to the G-orders in production. The quantity of
unallocated capacity is used to guarantee the delivery of G-orders. We use the term available
capacity to represent the quantity of unallocated capacity. The firm does not accept G-orders
when it has no available capacity. In addition, the firm stops accepting G-orders at the
beginning of the next period, which we name as deadline. After the deadline, the production
schedule in that period is frozen. The firm does not allow new orders to be inserted into
a frozen schedule because at the beginning of each production period, the firm needs to
reallocate the available resources, e.g., the number of workers at each machine, internal
and external logistics, etc. Inserting an order usually incurs extra cost. The superiority of
freezing production schedules has been proven by Sridharan et al. (1987).

[Figure 1 about here.]

Notation. We denote the two different price quotes the firm offers for G-order and U-order
by pG, pU : pG, pU ∈ R+, respectively. The available capacity, which represents the number
of capacity units (i.e., man-day, man-hour, etc), is denoted by m : m ∈ Z+. The number of
future arrivals before the deadline is denoted by n : n ∈ Z+, which is adaptively estimated,
noting that each arrival does not necessarily result in an accepted order. (m,n) represents
the case in which the firm has m available capacity and expects n future arrivals.

We use r : r ∈ R to represent a customer’s WTP for a G-order. A customer’s WTP is
determined by two factors, i.e., its valuation on the firm’s product and the substitutes from
the firm’s competitors. Supposing that a customer values the firm’s product at V : V ∈ R
and the profit it can obtain by choosing the best substitute is S : S ∈ R+, then we define
a customer’s WTP as r = V − S. Because V and S are both random variables, then r is
a random variable. We use v : v ∈ R+ to represent the customer’s impatience factor. We
define the impatience factor as the cost incurred to the customer when there is no due-date
guarantee. Without loss of generality, we use f(r, v) to denote the joint probability density

function (JPDF). We also use the notation f(r, v; ~θ) to represent the JPDF of r and v when

the form of the distribution functions depends on the vector ~θ.
The adaptive control process is described as in Figure 2. As shown in Figure 2, the

dynamic pricing module computes the prices pG and pU , and then the firm quotes the prices
to arriving customers. The sample collecting module gathers customers’ choices and their
arrival rate, and the production monitoring module monitors the workload of the firm’s each
production line in real time. The sample collecting module and the production monitoring
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module periodically pass the information to the parameter estimating module. Based on the
current firm’s production status, customer arrival rate and customer choices, the parameter
learning module adjusts the estimation of m, n, ~θr and ~θv, and then passes the new estimators
back to the dynamic pricing module.

[Figure 2 about here.]

Assumptions. We make the following assumptions to form our model:

Assumption 1. The firm makes a take-it-or-leave-it offer.

We assume that the firm makes price quote to each customer. If the customer accepts the
price quote, then it places the order; otherwise the customer leaves and does not come back.
A similar assumption can be found in previous research, e.g., Gallego and Ryzin (1994), where
they assumed that customers do not act strategically by adjusting their buying behavior in
response to the firm’s pricing strategy. This is also common in practice. As an OKP firm
usually keeps little or no parts inventory and only makes orders on demand, but when the
firm orders parts, it requires fast delivery. Therefore, if the customer does not accept the
current offer, then a substitution has to be found immediately and hence long term strategic
behavior does not happen.

Assumption 2. The processing time of an order is constant.

Here we assume that the workload of a single order is constant and equal to unity, which
we take as a capacity unit. This assumption is consistent with the characteristic of OKP
that the batch size of an order is small, or even just a single unit. For the case where the
orders are heterogeneous in processing time, we can approximate the optimal prices through
our model, and the method is shown in Section 6.1. We abstract from the issues of differing
set-up costs between orders.

Assumption 3. The variable cost of production is zero.

As mentioned in earlier, we treat the labor cost as a fixed cost, that is, an added order
does not incur additional labor cost. We do not consider material cost as the pricing strategy
is our focus recognizing that the problem can be easily generalized by subtracting a constant
unit production cost from the unit price. A similar assumption can be found in the literature
on production planning and scheduling when pricing is considered, for example, Chen and
Hall (2010) and Deng and Yano (2006). There is little loss of generality as with a constant
processing time, we can take the variable cost of each order to be fixed, and reinterpret prices
as net of costs.
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3. Dynamic pricing strategy (DPS)

Our setting can be regarded as an extension of the literature in dynamic pricing, which
studies cases in which a firm has a stock of goods to dispose of within a specified time,
potential customers arrive sequentially and stochastically, and the probability distribution of
prices they are willing to pay is known. The firm sets prices so as to maximize expected cash
receipts during the sale, recognizing that unsold items are worthless to the firm (Bitran and
Caldentey 2003). Our setting is similar because if the available capacity is not fully allocated
after the beginning of a production period, then it is worthless. We use the Bellman equation
to compute the optimal price quotes when the firm offers two types of orders.

Suppose that a customer arrives and receives price quotations pG for G-order and pU

for U-order. If the customer chooses a G-order, then its net gain, denoted by ξG, is ξG =
r − pG. Otherwise, if the customer chooses a U-order, then its net gain, denoted by ξU , is
ξU = r − pU − v. The concept of “net gain” associates with the price-setting firm. If a
customer has positive net gain by purchasing from the target firm, it means the net profit to
be obtained from the target firm is higher than the one to be obtained from the best offer of
other firms (outside options). We define the term “absolute gain” as the difference between
the customer’s valuation of the product and the product’s price. Then the net gain equals to
the difference of the absolute gains the customer makes by choosing the price-setting firm’s
product rather than its best outside option. The net gain measures the difference between
the net profits that can be obtained from a supply chain with the target firm and a supply
chain without the target firm. The customer chooses the option that creates the higher
net gain and only purchases when its net gain is non-negative. Otherwise it leaves without
purchasing and its net gain (from the firm) is zero. First, we compute the probabilities of
the customer choosing each type of order.

The customer chooses the G-order only if ξG ≥ 0 and ξG ≥ ξU . Thus, given pG, pU and
the distribution of r and v, the probability of the customer choosing the G-order, denoted
by PG(pG, pU), can be obtained as

PG(pG, pU) = Prob(ξG ≥ 0 and ξG ≥ ξU)

= Prob(r − pG ≥ 0 and r − pG ≥ r − v − pU)

=

∫ +∞

pG

∫ +∞

pG−pU
f(r, v)dvdr (1)

The customer chooses the U-order under two circumstances, i.e., ξG ≥ 0 and ξG < ξU ,
or ξG < 0 and ξU ≥ 0. Thus, given pG, pU and the distribution of r and v, the probability
of the customer choosing the U-order, denoted by PU(pG, pU), can be obtained as

PU(pG, pU) = Prob(ξG ≥ 0 and ξG < ξU) + Prob(ξG < 0 and ξU ≥ 0)

= Prob(r − pG ≥ 0 and r − pG < r − v − pU)

+Prob(r − pG < 0 and r − v − pU ≥ 0)

=

∫ +∞

pG

∫ pG−pU

0

f(r, v)dvdr +

∫ pG

pU

∫ r−pU

0

f(r, v)dvdr (2)

The Bellman equation used to compute the optimal price quotes is based on the proba-
bilities obtained from (1) and (2).
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Suppose that when a customer arrives, the firm faces an (m,n) case. For clarity of
expression, we let n include the current customer. We examine the optimal price quote
under two different situations: when capacity is greater or equal to the number of future
arrivals, and when capacity is less, i.e., m ≥ n and m < n.

When m ≥ n, the firm estimates that the number of future arrivals will not exceed
the current available capacity. Then the (m,n) case can be treated as a straightforward
uncapacitated problem. Because there is no capacity constraint, a single arrival has no
impact on the price quotation to the other arrivals. Thus, all the arrivals are quoted the
same price. The firm optimizes the price quotation by maximizing the expected profit
contributed by each customer. Thus the optimal price quotation for problem (m,n), denoted
by {pGmn, pUmn}, can be obtained by

{pGmn, pUmn} = arg max
{pG,pU}

[
pGPG(pG, pU) + pUPU(pG, pU)

]
, (3)

which can be solved through the first-order conditions. Because there are n future arrivals,
the maximum expected total profit, denoted by πmn , is

πmn = n
[
pGmnPG(pGmn, p

U
mn) + pUmnPU(pGmn, p

U
mn)
]
. (4)

When m < n, the (m,n) case is a constrained problem. Because the price quoted to a
later customer depends on the behavior of earlier customers, we use a Bellman equation to
solve the optimal price quote for the current customer. The impact of the current customer
is summarized as follows:

• If the current customer chooses the G-order, a unit of available capacity is allocated.
The firm earns pG and then faces an (m− 1, n− 1) problem;

• If the current customer chooses the U-order, it does not affect available capacity pre-
served for G-orders. Thus, the firm earns pU and then faces an (m,n− 1) problem;

• If the current customer does not choose either type of order, then the firm earns no
profit and faces an (m,n− 1) problem.

Considering the three possibilities, the optimal price quote for the current customer,
{pGmn, pUmn}, can be obtained by solving the following Bellman equation:

πmn = max
{pG,pU}

[
PG(pG, pU)[pG + πm−1n−1 ] + PU(pG, pU)[pU + πmn−1]

+[1− PG(pG, pU)− PU(pG, pU)]πmn−1

]
, (5)

where πmn can be solved recursively.
When the firm has no available capacity, the customers can only purchase U-orders. Thus

π0
n for any n can be obtained as

π0
n = max

pU
npUProb(ξU ≥ 0)

= max
pU

npUProb(r − v − pU ≥ 0)

= max
pU

npU
∫ +∞

pU

∫ r−pU

0

f(r, v)dvdr.
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The example in Figure 3 illustrates the process of solving for expected profit when avail-
able capacity is 3 and the number of future arrivals is 5, π3

5, through recursion. To solve
each πij where i ≤ m and j ≤ n, πij−1 and πi−1j−1 are first solved sequentially. Note that the
values of π1

2 and π2
3 are known when accessed the second time. Thus, a “tabu list” can be

employed to substantially reduce the computational time. We preset an m × n array as a
tabu list to store every solved value of πij. At the beginning of each recursion for computing
πij, we check the tabu list first and see if it is already solved. If πij is solved already, then the
current recursion stops and directly returns the solution stored in the tabu list. In Figure
3, each node represents a recursion, and there are 13 recursions in the entire computation
process.

[Figure 3 about here.]

Let T (m,n) be the number of recursions required in computing πmn |n>m when the tabu
list is incorporated. Then by analyzing the branched figure as in Figure 3, it is not difficult
to obtain:

T (m,n) = 2m(n−m) + 1 ∈ O(mn). (6)

From (6), we can conclude that when the tabu list is employed, πmn |n>m can be computed
within polynomial time, which means that solving pGmn and pUmn is not an NP-hard problem.

4. Constant pricing strategy (CPS)

In this section we present a CPS in which the firm does not adjust the price quoted to
the customers, and then we compare the prices obtained by the CPS and our DPS.

Suppose with a CPS, the firm quotes prices pG and pU to every arriving customer. The
probability of a customer choosing the G-order is PG(pG, pU), and so the number of customers
that choose the G-order follows a binomial distribution with n trials, each of which yields
success with probability PG(pG, pU). As the number of G-orders is constrained by m, then
the expected number of G-orders, denoted by NG(pG, pU), is obtained as

NG(pG, pU) = m
[
1−B

(
m;n,PG(pG, pU)

)]
+

m∑
i=1

ib
(
i;n,PG(pG, pU)

)
, (7)

where b(k;n,Pr) and B(k;n,Pr) are respectively the pmf (probability mass function) and
the cdf of k when k is a random integer following a binomial distribution with n trials and
success probability Pr .

Similar to the G-orders, the number of customers that choose the U-order follows a
binomial distribution with n trials, each of which yields success with probability PU(pG, pU).
Note that besides the customers that initially prefer U-orders, some customers choose U-
orders because the firm has no available capacity. Thus, the expected number of U-orders,
denoted by NU(pG, pU), is obtained as

NU(pG, pU) = nPU(pG, pU) +
n∑

i=m+1

[i−m]b
(
i;n,PG(pG, pU)

)
κ(pG, pU), (8)
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where κ(pG, pU) =
[ ∫ +∞

pG

∫ r−pU
pG−pU f(r, v)dvdr

]
/PG(pG, pU). κ computes the probability that

a customer’s net gain from choosing a U-order is positive, given that it initially prefers a
G-order.

Based on (7) and (8), we can solve the optimal pG and pU by

max
pG,pU

pGNG(pG, pU) + pUNU(pG, pU). (9)

We present a numerical analysis to compare the prices obtained from the DPS and CPS. In
the numerical analysis, we set r and v to be distributed following three different distributions
as shown in Figure 4. In the case where r and v are independent, as in Figure 4(a), the pdf
of each random variable is not affected by the value of the other random variable. In Figure
4(b) and Figure 4(c), v and r are correlated. We use the distribution in Figure 4(b) as an
example where r and v are positively correlated because the expected value of v is increasing
in the value of r, and use the distribution in Figure 4(c) as an example where r and v are
negatively correlated because the expected value of v is decreasing in the value of r. In the
independent case, we set r and v to be both distributed from U(0, α1), while in the positively
correlated and negatively correlated cases, we set the r and v to be jointly distributed from
the uniform distribution within the area as shown in Figure 4(b) and Figure 4(c). We set
α1 = 10, α2 = 0.8 and α3 = 0.8 for the numerical test. In the three cases, we set m/n = 2.
We use numerical methods to solve pG and pU from (9). In order to avoid the complexity
incurred from computing the pdf and cdf of a binomial distribution, we approximate the
binomial distribution with normal distribution when n is large (n ≥ 30).

[Figure 4 about here.]

The prices for G-order and U-order under different problem scales in the three cases
are displayed in Figure 8. We observe that when the problem scale is small (m and n are
small), the difference between two pricing strategies is substantial. The results also show
that with increased problem scale, the stochastic problem approaches to the deterministic
problem. That is, for both DPS and CPS, the price quotes converges to the optimal solution
of deterministic problem.

max
pG,pU

pGPG(pG, pU) + pUPU(pG, pU), Subject to: nPG(pG, pU) ≤ m.

[Figure 5 about here.]

In the numerical analysis, we can also observe that when the problem scale is larger
than a certain point, the difference between the prices obtained in DPS and CPS is very
small. Under the constraint of constant pricing, computing the CPS prices can be much
more efficient. Thus, based on the results of numerical analysis, we can conclude that CPS
prices can be a good approximation for DPS prices when the problem scale is large.

Although in large scale problems the CPS price is a good approximation for DPS prices,
the welfare of the firm and of some customers might be significantly different because in
CPS the firm does not change price as time passes. Thus, the optimal price quote at any
time may deviate from the original setting. In practice, a more common pricing strategy,
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a periodic pricing strategy (PPS), can be found where the firm changes the price setting
periodically when the problem scale is large and it is not feasible to dynamically compute
a price quote for every customer arrival. In our version of PPS, we assume that the firm
adjusts price quote each time the new customer arrivals reach a fixed number, which we
name as the “pricing interval”. In the next section, we also investigate performance of the
supply chain under different settings of pricing interval in PPS.

5. Welfare analysis

In this section, we analyze the firm’s profit and the customers’ welfare when different
pricing strategies are employed.

5.1. The firm’s profit in DPS and CPS

The firm’s expected profit can be obtained through (4), (5) and (9). In principle, the DPS
should always yield weakly greater profits for the firm because the dynamic price could be
set to a constant. The gap between the firm’s profits obtained from our DPS and CPS in the
three distribution cases are shown in Figure 8. In Figure 8, the curves show the percentage
by which the expected profit obtained from our DPS is higher than the one obtained from
the CPS. We observe that when the expected value of v increases, the superiority of DPS is
more substantial.

[Figure 6 about here.]

5.2. The customer’s net welfare obtained from the price-setting firm in DPS and CPS

We define the customers’ net welfare obtained from the price-setting firm as the difference
of welfare obtained from a supply chain with the price-setting firm and the one from a supply
chain without the price-setting firm. The customers’ net welfare in case (m,n) is denoted
by Wm

n . In an extreme case, if all no customers buy from the target firm, the customers’ net
welfare (from the price-setting firm) is zero.

First we compute any arriving customer’s expected net gain which can be divided into
three parts.

1. If r ≥ pG and v ≥ pG − pU , then the customer chooses the G-order. The expected net
gain, denoted by ξ1(p

G, pU), can be computed as

ξ1(p
G, pU) =

∫ +∞

pG

∫ +∞

pG−pU
[r − pG]f(r, v)dr.

2. If r ≥ pG and v < pG − pU , then the customer chooses the U-order. The expected net
gain, denoted by ξ2(p

G, pU), can be computed as

ξ2(p
G, pU) =

∫ +∞

pG

∫ pG−pU

0

[r − v − pU ]f(r, v)dvdr.

9



3. If pU ≤ r < pG and r − v ≥ pU , then the customer chooses the U-order. The expected
net gain, denoted by ξ3(p

G, pU), can be computed as

ξ3(p
G, pU) =

∫ pG

pU

∫ r−pU

0

[r − v − pU ]f(r, v)dvdr.

When the customer’s r and v are not within the ranges specified above, it does not
purchase and its net gain is zero. Based on the expected net gain of each arriving customer,
the customers’ net welfare can be obtained as

Wm
n = ξ1(p

G
mn, p

U
mn) + ξ2(p

G
mn, p

U
mn) + ξ3(p

G
mn, p

U
mn)

+PG(pGmn, p
U
mn)Wm−1

n−1 + [1− PG(pGmn, p
U
mn)]Wm

n−1. (10)

In (10), the first line computes the welfare of the current customer when price quotes are
pGmn and pUmn, respectively, while the second line computes the total welfare of later arriving
customers.

When m ≥ n, all customers are quoted the constant price regardless of the pricing
strategy. Thus, the customers’ net welfare can be obtained as

Wm
n = n[ξ1(p

G, pU) + ξ2(p
G, pU) + ξ3(p

G, pU)], (11)

where pG and pU are computed by (3).
When there is no available capacity, m = 0, the customers can only choose U-orders, and

then the customers’ net welfare is

W 0
n = n

∫ +∞

pU

∫ r−pU

0

[r − v − pU ]f(r, v)dvdr. (12)

In order to obtain the customers’ net welfare in DPS and CPS, we substitute pGmn and
pUmn in (10), (11) or (12) with the prices computed under DPS and CPS for case (m,n). Note
that in CPS, pGmn and pUmn are constant during the recursion.

Figure 8 shows the percentage by which the customers’ net welfare obtained by DPS
is higher than the one obtained by CPS. We observe that in both the independent and
correlated cases, the customers’ net welfare obtained by DPS is higher. We can also observe
that when the mean of v increases, the customer benefit more from DPS. This is because
the CPS increases the chance that the price is underestimated or overestimated when the
future supply-demand ratio (m/n) changes. If the future m/n decreases, as mentioned in
Section 4, pG should increase while pU should decrease, and hence in CPS G-orders will
be underpriced and U-orders will be overpriced. When this happens, customers that arrive
early and purchase G-orders, are better off. However, despite the customers that are better
off, the net gain of the customers that purchase U-orders are reduced, and also because the
G-orders are underpriced, it increases the risk that the firm does not have enough available
capacity for the late arriving customers that would purchase G-orders. On the other hand,
if the future m/n decreases, G-orders will be overpriced and U-orders will be underpriced
when CPS is employed. In this case, customers that purchase U-orders will be better off,
but the net gain of the customers that purchase G-orders will be reduced.
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[Figure 7 about here.]

Consider an extreme case in which there are 1 unit available capacity and 2 arriving
customers whose r and v are both distributed from U(0, 10) as shown in Table 1. We compute
the price quotes for each customer when DPS and CPS are employed. We can observe that
although there is a reduction for the welfare of the customer who arrives earlier, the increase
of the welfare of the customer who arrives later leads to the increase of the total customer
welfare. As the firm’s expected profit also increases in DPS, we conclude that the welfare
for the entire supply chain is increased.

[Table 1 about here.]

Because in DPS, both the firm’s and the customer’s net welfare are increased, the net
welfare of the global supply chain is increased, and that is the value of DPS over CPS. In the
following section, we propose a learning method to estimate the required parameters. These
parameters are usually hard to be measured or observed in practice.

5.3. The customers’ absolute welfare obtained from the price-setting firm in DPS and CPS

We define the customers’ absolute welfare as the welfare obtained by the customers
supposing all the customers choose their outside options after rejecting the price-setting
firm. Thus, when computing the customers’ absolute welfare, a customer who rejects the
price-setting firm may obtain positive profit.

We use a numerical test to show the customers’ absolute welfare in both DPS and CPS.
In the numerical test, we suppose that by choosing their best outside option, a customer’s
absolute gain, S, is distributed from U(0, 5). We set a customer’s valuation of the price-
setting firm’s product, R, to be distributed from U(5, 10). Supposing that a customer’s
impatience factor, v, is distributed from U(0, 10), then based on the definition of a customer’s
WTP, r = R−S, in Section 2, we have f(r, v) as in Figure 8. If a customer chooses G-order,
then its absolute gain is R−pG; if it chooses U-order, then his absolute gain is R−pU − v; if
it rejects the price-setting firm, then its absolute gain is S. It is straightforward that without
the price-setting firm, the absolute welfare of n customers would be nE(S), where E(S) is
the expected value of S.

[Figure 8 about here.]

We keep n/m = 2 and compare the customers’ absolute welfare for problems at different
scales. Due to the complexity of computing the customers’ absolute welfare, we evaluate
the customers’ absolute welfare based on simulation. That is, we simulate the case where a
number of customers arrives sequentially. In DPS, each customer are quoted prices based on
current m and n, while in CPS, each customer are quoted the same prices computed for the
first customer. By summation, we can obtain the customers’ total absolute gain. We repeat
the simulation experiment for 100 times, and then the mean of the total absolute gain in
each repetition approximately equals to the customers’ absolute welfare.

The gap between customers’ absolute welfare using DPS and CPS under different problem
scales is shown in Figure 9. The dashed line in Figure 9 is the power trendline generated by
MS Excel. It can be observed that in DPS the customers’ absolute welfare is higher the one
in CPS, which is consistent with the result of comparison of customers’ net welfare between
in DPS and in CPS.
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[Figure 9 about here.]

5.4. The relationship between pricing interval and customer welfare

In large scale problems a compromise pricing strategy, PPS, is often employed. We
examine the relationship between the price setting interval and the customer’s welfare is
studied through a simulation experiment.

In the simulation experiment, we set a customer’s WTP and impatience factor to be both
identically and independently distributed from U(0, 10). We set m = 250 and n = 500 to
simulate a large scale problem. We show in Figure 10 the percentage by which the customers’
net welfare obtained by PPS is higher than the one obtained by CPS under different settings
of the pricing interval, denoted by l. From Figure 10, we can see that the PPS increases
the customer’s welfare, and the superiority of l decreases when l is increased. We observe
in Figure 10 that when l is less than 100, the change of the superiority of PPS is not very
significant. This observation indicates that in practice, the firm can increase the pricing
interval within certain range without significantly affecting the customer welfare.

[Figure 10 about here.]

6. Parametric estimation for dynamic pricing

As stated in the description of the control system in Section 2, the parameter learning
module needs to adaptively change the estimates of m, n and other parameters related to
the distribution of r and v.

6.1. Estimate available capacity (m) and future arrivals (n)

In this work, we consider a case where the overall production system within the firm is
composed by many subsystems, and the overall demand has various requirements for capacity
of each subsystem. We use an industrial case from a custom window manufacturer, which
has been referred to in a previous study (Hong et al. 2010), as an example to demonstrate
the process of identifying the estimators of m and n.

[Figure 11 about here.]

As introduced by Hong et al., the design of a custom window can be described by an
AND-OR tree as shown in Figure 11. For the purpose of clarity, We use N# to name a
node in the tree. When a node of the tree, say node N , is chosen, the customer then need
to choose its child node(s). Let the set of N ’s direct child nodes be DC (N), and then the
conditional probability of choosing a child node e : e ∈ DC (N) is denoted by PROB e. If
DC (N) is dominated by an AND relationship, then PROB e = 1 ∀e ∈ DC (N). If DC (N) is
dominated by an OR relationship, then

∑
e∈DC (N) PROB e = 1

We suppose that any node in the AND-OR tree, N , must be processed by a production
line, which is denoted by LN . Note that the production line here can be a virtual production
line. For example, N1321 and N1322 are just nodes representing feature options, no real
production line is assigned to these nodes. The window production is accomplished through
five real production lines, of which three produce frames (i.e., wood, metal and vinyl), one
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cuts glass, and one is for final assembling. In Figure 11, each node which requires a real
production line is marked with ‘*’.

Here we define two types of available capacity relating to a node (N), i.e., the available
capacity of the production line, denoted by CLN , and the overall available capacity of node,
denoted by CN .

Suppose that the maximum workload that can be processed on LN in a production period
is MAXW N , and the current total workload of the jobs for G-orders to be processed on LN
is CURW N . Then if N is a node with ‘*’, CLN can be obtained as

CLN =
MAXW N − CURW N

MAXW N

If N is a node with no ‘*’, since no real production line is required, then CLN = 1.
CN is mutually determined by CLN and the available capacity of N ’s direct child nodes.

CN can be obtained as

CN = min{CLN ,
∑

e∈DC (N)

PROB eCe} if DC (N) is dominated by OR relationship, (13)

or CN = min{CLN , min
e∈DC (N)

Ce} if DC (N) is dominated by AND relationship.

In (13), we use PROB e as the weight of Ce when computing CN because when the customers
are more prone to choose child node e, then e is more critical when computing the overall
capacity.

Because each customer may choose different customization for their products, the maxi-
mum number of windows the firm can produce varies from period to period. Thus, we denote
the average of the maximum number of windows produced in each period by AMAX . Then
the available capacity, m, can be obtained as

m = CN1 × AMAX

The future arrivals n is the future arrivals before the deadline. In most theoretical work,
the assumption is made that the customers arrive according to a Poisson process, and so n
can be estimated as λt, where λ is the arrival rate and t is the time left to the deadline.
However, in many cases, the arrival rate is not just a function of time. For example, when
the firm’s target market is limited, then the number of future arrivals can also be related to
the past arrivals. A variety of methods to predict the expected number of arrivals can be
found in Armstrong and Green (2005).

Even though we assumed the processing time of an order is constant (Assumption 2), in
practice a customer’s order may vary in its capacity requirement (or processing time). In
such cases, we can use our method to compute the price for an order with average capacity
requirement. Supposing that after accepting the order, the available capacity becomes m′,
then the prices for G-order and U-order can be approximately obtained at pGmn(m−m′) and
pUmn(m−m′), respectively.
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6.2. Learning the distribution of r and v

Because it is hard to observe the customer’s WTP and impatience factor in practice, in
this section we focus on developing a learning process to estimate the distributions of r and
v.

The form of a distribution might be determined by many features, such as the distribu-
tion type (i.e., exponential, normal, uniform, etc.). In practice, the firm might have more
information about some particular features but less information about others. We study the
case in which the firm knows the distribution type of the customer’s WTP and impatience
factor, but is uncertain about values of the distribution parameters. Without loss of gen-
erality, we suppose that the firm knows that r and v are independent, and the distribution
types of r and v are normal, but the means (µr and µv) and the variances (σ2

r and σ2
v) are

unknown. Thus, the goal of the learning process is to estimate µr, µv, σr and σv so that the
distribution functions required for computing the optimal price can be formed.

We let f r(r;µr, σr) and F r(r;µr, σr) respectively be the pdf and cdf of r, and let f v(v;µv, σv)
and F v(v;µv, σv) respectively be the pdf and cdf of v. Because extra parameters (µr, σr, µv
and σv) are needed as inputs in the cdf and pdf, we modify the argument in the notation for
the probabilities that a customer purchases a G-order or a U-order in (1) and (2). Supposing
that the firm has recorded K customers’ purchases and customer k : k ∈ {1, . . . , K} is quoted
prices pGk and pUk for each type of orders, then the probabilities that a customer purchases

a G-order or a U-order can be represented as P~θG(pG, pU) and P~θU(pG, pU) respectively where
~θ = (µr, σr, µv, σv).

We develop a maximum-likelihood-estimation (MLE) based parametric estimation method
to find the estimates of µr, µv, σr and σv. The likelihood, denoted by L, is constructed as

L =
K∏
k=1

[[
1− P~θG(pG, pU)− P~θU(pG, pU)

]y0k[P~θG(pG, pU)
]yGk [P~θU(pG, pU)

]yUk ], (14)

where

y0k =

{
1 if customer k leaves without purchase;
0 otherwise.

yGk =

{
1 if customer k chooses G-order;
0 otherwise.

yUk =

{
1 if customer k chooses U-order;
0 otherwise.

To simplify the form of the likelihood, we take natural logs both sides of (14). After simple
algebra, we can obtain

lnL =
K∑
k=1

[
y0k ln

[
1− P~θG(pGk , p

U
k )− P~θU(pGk , p

U
k )
]
+yGk lnP~θG(pG, pU)+yUk lnP~θG(pGk , p

U
k )

]
. (15)

Because of the complexity of solving the first-order condition of (15), we use trust-region
method (Conn et al. 2000) to search the optimal setting of parameters.
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We present a neural network (NN) based regression method as a benchmark for the MLE
based parameter estimation method. In NN, we train the network to regress the probability
of a customer choosing each type of orders with respect to the price quote for each type of
orders. That is, pGk and pUk are the inputs, and P~ωG(pG, pU) and P~ωU(pG, pU) are the outputs,
where ~ω is the vector of weights which will be determined through Levenberg-Marquardt
backpropagation training. In the training process, yG and yU are the target values for P~ωG
and P~ωU , respectively. We set 1 hidden layer which includes 20 neurons for the NN.

In the simulation, r and v are each normally distributed such that r ∼ N(10, 22) and
v ∼ N(3, 22). The prices quoted to each customer are randomly generated such that pG ∼
U(0, 15) and pU ∼ U(0, pG). Given a combination of r, v, pG and pU , we obtain each
customer’s choice indicators, y0, yG and yU .

We test the two regression methods under different volumes of historical sale records.
Then we compare the outputs of MLE based method and NN based method with the true
result computed by (1) and (2) in Section 3. In the comparison, we randomly choose pG and
pU from U(0, 15) and U(0, pG), respectively, and then show the coefficient of variation of the
root mean square error, CV RMSE, computed as

CV RMSE =

√
E
[
(y − ŷ)2

]
ŷ

,

where y is the output of the regressed probability functions, ŷ is the output of the true
probability functions ((1) and (2)), and ŷ is the mean of ŷ. The comparison of MLE based
regression and NN based regression is shown in Table 2. In Table 2, each value of CV RMSE
is the average of 20 rounds of simulation. We observe that the MLE based regression method
can achieve an output much closer to the true value computed by (1) and (2), which supports
the superiority of the MLE based regression. However, this MLE based regression method
is only applicable when the distribution types of r and v are known. In the case where r
and v are distributed with unknown distribution, the NN based regression is the only option
because r and v are not required to form P~ωG(pG, pU) and P~ωU(pG, pU).

[Table 2 about here.]

Figure 12 graphically shows the outputs of the true probability functions and the regressed
probability functions using different regression methods when the sample size is 500. We
expect that the outputs of NN based regression approximates better when the number of
neurons and sample sizes are increased, whereas it is usually not realistic to obtain a large
enough sample. However, because the NN based regression is an substitute of the MLE
based regression when the firm cannot estimate the distribution type of r and v, then it is
a good practice for the firm to simultaneously run the two regressions so that the firm can
capture the failure of estimating the distribution type of r and v.

[Figure 12 about here.]

15



7. A practical case study of a local window and door company

As a practical case study we investigate a local door and window company and analyze its
sales data to study the potential to increase the company’s expected profit and the customers’
welfare. Hereafter, we use the term “principal company” to refer the local door and window
being studied. As an OKP company, the principal company provides customized doors and
windows to the local customers that include local builders and renovators. Customer orders
can be divided into two categories: New-Construction (NC) and Sales&Installation (SI).
In the NC category, the customers order the customized doors and windows for building
new homes or other kinds of new estate properties, while in the SI category, the customers
order replacements of broken, inefficient, or out-of-style windows or doors. In the company’s
business, the NC orders and SI orders take up the proportions of 55% and %45 (by dollar
sales), respectively. The two categories of orders have different features.

In the NC category, the customers usually order the products early before the due dates
direct from the company. For example, some builders usually order the doors or windows
with specified requirements several months before the due dates and request on-time delivery
services. Because of the long-term cooperation with the builders, the principal company
schedule the NC orders with priority.

In the SI category the windows and doors are usually ordered for immediate use. Thus,
the customers are sensitive to the leadtime. In the principal company the production is
planned in weeks. At any time, the production schedule for the current business week is
determined and frozen. Thus, new orders can only be scheduled after the current business
week, which means that at earliest, the principal company can only guarantee the delivery
before the end of the next week. In the SI category, the principal company treats the orders
which require delivery before the end of the next week as G-orders, and treats the other
orders as U-orders. For the U-orders, the company only promises a leadtime of 2-3 weeks.

The principal company produces products of multiple product families, and the products
in different product families are processed in different production lines. Thus the capacity of
the production line determines the production capacity for a product family. The principal
company prices each product family separately. The customers make U-orders by default,
and for each product family, there is a fixed price for every detail settings of product features.
If a customer requires a G-order, then an extra amount is charged on top of the U-order
prices.

The number of G-orders is constrained by the company’s available capacity. The available
capacity is computed by subtracting the workload of pre-scheduled jobs, which include NC
orders and the U-orders which have been placed for 2 weeks, from the capacity of the
production line. Here, we only show the company’s sales data of one product family, vinyl-
framed windows. The shop floor layout of the designated production line, V10, is displayed
as in Figure 13.

[Figure 13 about here.]

Figure 14 shows the 4-week sales data of V10 orders in April 2009. Note that the sales
data is scaled in this article because of the non-disclosure agreement. At the beginning of
the week, the production manager communicates with the sales department the available
capacity to guarantee the delivery of G-orders received in that week. The sales department
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stops accepting G-orders when the available capacity is completely allocated. The numbers
of G-orders and U-orders as well as the pre-scheduled orders are displayed in the form of
accumulated bar-chart. The dash line in Figure 14 shows the V10 production line’s capacity.
The principle company employs a simple differential pricing strategy for G-orders and U-
orders, where the customers are charged $25 more than the U-order price for a G-order.

[Figure 14 about here.]

From Figure 14, we can see that among the SI orders received within the four weeks,
the proportion of G-orders takes up 35%, 36%, 30% and 26%, respectively. It is obvious
that in the first week, the available capacity is not fully utilized while in the third and the
forth weeks, the proportions of G-orders are bounded by the company’s available capacity.
From Section 5, we know that in this case the company and the customers’ welfare are not
maximized due to improper pricing. Thus, a potential exists where both the company and
the customers’ welfare can be increased by employing DPS or PPS.

In order to estimate the distributions of the customers’ WTPs and impatience factors, the
company can first dynamically change the extra charge for G-orders by adding or subtracting
a constant amount. The company can also add a periodically varying promotion discount
to U-orders. When the company has enough sales data under varying prices, the customers’
WTPs and impatience factors can be estimated using MLE, and then the more efficient
extra charge for G-orders and promotion discount for U-orders can be computed through
the method introduced in this work.

8. Conclusion

In this research we modeled a DPS when the firm’s capacity is limited and a due-date
guarantee may be required or favored by some customers. We formulated a dynamic Bellman
model to compute the optimal price quotes. We analyzed the computational complexity
of the proposed dynamic method, proving that the complexity of the dynamic method to
compute the optimal price quotes is polynomial.

Usually it is believed that if the firm dynamically changes prices to maximize its profit,
the market demand is exploited and so the customers’ welfare is lowered. However, by
comparing DPS with the constant pricing strategy (CPS), we show that when the firm
dynamically change the prices for each type of orders, both the firm and the customers are
better off. This finding strongly supports the superiority of DPS. In the literature, we have
not found any research studying the how the DPS increases benefits to the entire supply
chain.

For practical applications, we also proposed methods to estimate the parameters, which
are complementary to the proposed pricing strategy. We introduced the methods to evaluate
the firm’s current available capacity, future arrivals, and the distribution of the customer’s
WTP and impatience factor. In the estimation of the distribution of WTP and impatience
factor, the proposed estimation method can be easily extended so that the distribution with
more unknown parameters can be estimated. We also presented a case study where DPS
and CPS could be employed.

As future work, the proposed method can be studied within a supply chain which includes
one supplier that supplies parts for multiple manufacturers. In this setting, the supplier is
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OKP manufacturer and faces a pricing problem with respect to the delivery date, while the
downstream manufacturers choose the best option and then face a job sequencing problem.
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Figure 5: Price quotes obtained from DPS and CPS in different cases
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Figure 6: The gap of the firm’s expected profit under different pricing strategies in different cases
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Figure 7: The gap of customers’ net welfare under different pricing strategies in different cases
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Figure 8: f(r, v) when r = R− S, s ∼ U(0, 5), R ∼ U(5, 10) and v ∼ U(0, 10)
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Figure 10: The gap of customers’ net welfare under DPS and CPS for different setting of l
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Process planning, scheduling and control for one-of-a-kind production 11 

 

 
 

Figure 1. Shop floor layout for a producton line and work centers 

Delivery Date Confirmation 

As orders are entered into the system, the delivery date may be confirmed or may be 
tentative.  If tentative, a process has to be followed to confirm the delivery date so 
that the planners know when to schedule the order.  At Gienow, customers with 
tentative orders are phoned several days prior to the delivery date and asked to 
confirm.  If the order is not confirmed, it is then tentatively re-scheduled for a later 
delivery date. 

Since Gienow uses a fleet of trucks to deliver their (large) products there is a 
trucking schedule in place.  This means as an order is processed; only dates 
available to the location of the delivery address are seen as potential delivery dates 
by the schedulers.  During this process and as the various delivery dates come closer 
to “today”, the scheduler’s initial task is to load trucks to their potential capacity.  
When the time comes to confirm the schedule for the next day any truck that is not 
full to near capacity, then the scheduler will attempt to fill the truck by contacting 
customers that are known to have flexibility in their receiving dates. 

 

Line Balancing 

Once the initial schedule based on the trucking sequence has been determined, the 
loading of production lines is reviewed.  If lines are under or over-scheduled to their 
available capacity, the scheduler’s task is to balance the load on each line.  The 
balancing is achieved by either increasing or decreasing the available capacity by 
redistributing employee resources or by re-scheduling orders to increase or decrease 
the load on the lines.  

Figure 13: Shop floor layout for a production line and work centers
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Figure 14: Shop floor layout for a production line and work centers
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Table 1: An example of (1, 2) case

Price quote to the 1st customer:
DPS: {5.93,4.36} CPS: {5.49,4.24}

The welfare of the 1st customer:
DPS: 0.886 CPS: 1.054

The probability of the 1st customer choosing G-order:
DPS: 34.36% CPS: 39.39%

Price quote to the 2nd customer if the 1st customer chooses G-order:
DPS: {∞,3.33} CPS: {∞,4.24}

The welfare of the 2nd customer if the 1st customer chooses G-order:
DPS: 0.494 CPS: 0.319

Price quote to the 2nd customer if the 1st customer does NOT choose G-order:
DPS: {5.00,5.00} CPS: {5.49,4.24}

The welfare of the 2nd customer if the 1st customer does NOT choose G-order:
DPS: 1.25 CPS: 1.054

The expected welfare of the 2nd customer:
DPS: 0.990 CPS: 0.764

Total welfare of the two customers:
DPS: 1.876 CPS: 1.818

The expected profit of the firm:
DPS: 4.26 CPS: 4.19

Table 2: RMSE of MLE based regression and NN based regression.

Regressed Sample size
function 50 100 200 500 1000

MLE P~θG 15.33% 10.10% 7.29% 4.67% 3.18%

P~θU 16.08% 8.79% 6.36% 4.30% 3.37%
NN P~ωG 27.50% 21.77% 16.12% 12.26% 9.00%

P~ωU 27.05% 18.47% 15.10% 11.19% 9.69%
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