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ABSTRACT
We propose a trade-off balancing (TOB) heuristic in a no-wait flow shop to minimise
the weighted sum of maximum completion time (Cmax) and total completion time
(TCT ) based on machine idle times. We introduce a factorization scheme to con-
struct the initial sequence based on current and future idle times at the operational
level. In addition, we propose a novel estimation method to establish the mathemati-
cal relationship between the objectives min(Cmax) and min(TCT ) at the production
line level. To evaluate the performance of the TOB heuristic, computational experi-
ments are conducted on the classic Taillard’s benchmark and one-year historical data
from University of Kentucky HealthCare (UKHC). The computational results show
that minimisations of Cmax and TCT yield inconsistent scheduling sequences, and
these two sequences are relatively uncorrelated. We also show that our TOB heuris-
tic performs better than the best existing heuristics with the same computational
complexity and generates stable performances in balancing trade-offs.

KEYWORDS
Scheduling; No-wait flow shop; Trade-off balancing; Maximum completion time;
Total completion time.

1. Introduction

No-wait flow shops are critical in manufacturing systems, such as bakery process (Shao,
Pi, and Shao 2019), metal processing (Framinan and Nagano 2008) and semiconductor
manufacturing (Chien et al. 2011). In no-wait flow shop scheduling, all n jobs are
processed in the same order on all m machines, and no job is allowed to wait between
any two consecutive operations until the process is finished. Therefore, the start time
of a job on the first machine may be delayed due to the no-wait constraint. For more
details about applications of no-wait flow shop scheduling, see Allahverdi (2016).

There are two fundamental performance measures in no-wait flow shop schedul-
ing: maximum completion time (Cmax) and total completion time (TCT ). Cmax, or
makespan, is defined as the completion time of the last job on the last machine, which
reflects utilisation of the production line or production cost of the system. TCT is
defined as the sum of completion times of all jobs on the last machine, which reflects
material flows or holding cost in the system. Minimising makespan or min(Cmax) can
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improve the utilisation and reduce production cost, and minimising total completion
time or min(TCT ) can smooth material flows and reduce holding cost. Therefore, both
performance measures are of great importance to operations management and have
been intensively studied in the literature.

However, to min(Cmax) is NP -hard in the strong sense for a line with ≥ 3 machines
(Röck 1984), and to min(TCT ) is also strongly NP -hard (Johnson and Garey 1979) in
no-wait flow shop scheduling. Due to the NP -hardness in no-wait flow shop schedul-
ing, it is extremely time-consuming to seek optimal solutions by using exact methods
such as branch-and-bound algorithms even for moderate size problems. Therefore, it
is practical to seek near-optimal solutions by using heuristics with acceptable com-
putation times. Instead of single-objective optimizations, balancing trade-offs among
multi-objectives is suitable in many different applications, such as trade-offs between
queue time and utlisation in manufacturing systems with multiple servers (Wu and
McGinnis 2012) or between cost and time of clinical trials in healthcare systems (Zhao,
Wu, and Huang 2018). In no-wait flow shop scheduling, there is a gap in the current
literature whereby most articles consider trade-off balancing at the production line
level, but not at the operational level, which destabilize system performances. More
specifically, the production line level refers to performance of each job on the last
machine, such as Cmax, whereas the operational level refers to performance of each
job on each machine, such as completion times of each job on each machine. In our
work, we sequence jobs based on completion times of job j on machine i (Cj,i, where
j = 1, ..., n and i = 1, ...,m) at the operational level, which reveals more information
about the system than the Cmax or TCT at the production line level.

Considering the importance of bi-objective optimisation and its difficulties, we pro-
pose a trade-off balancing (TOB) heuristic to minimise trade-offs between Cmax and
TCT in no-wait flow shop scheduling. We make three contributions. First, we show the
trade-offs between Cmax and TCT in no-wait flow shop scheduling through our compu-
tational experiments, which means minimisation of one objective does not necessarily
minimise the other. Second, we take four different factors into consideration at the op-
erational level to construct the initial sequence in our TOB heuristic. The four factors
are objectives, idle time, lever effect on jobs and lever effect on machines. We find the
best combination for each objective and use different preferences (α) to combine these
two objectives together at operational level to construct the initial sequence. Third,
in the improvement phase of our TOB heuristic, we use the same preference (α) on
Cmax to reconstruct a sequence based on Cmax and TCT at the production line level.
To tackle different magnitudes of Cmax and TCT , we propose an estimation method
to normalise the impact of different magnitudes.

We test the performance of our TOB heuristic on both simulated and real data sets:
120 instances in Taillard’s benchmarks (Taillard 1993) and one-year historical data
from University of Kentucky HealthCare (UKHC). Based on computational results on
these data sets, we make the following observations. (1) After we consider the impact
of trade-off balancing at the operational level, the TOB heuristic performs better than
the Average Idle Time (AIT) and Current and Future Idle time (CFI) heuristics, which
are the best single-objective heuristics in the literature for min(Cmax) and min(TCT ),
respectively. (2) Our TOB heuristic generates stable performances on balancing trade-
offs based on our UKHC data set, which means the process is better under control if our
TOB heuristic is used for operating room (OR) scheduling. (3) A trade-off between
Cmax and TCT exists in no-wait flow shop scheduling as evidenced by computing
Spearman rank order correlations among the sequences for min(Cmax) and min(TCT )
for both data sets. The correlations are close to zero and empirically demonstrate the
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inconsistency between min(Cmax) and min(TCT ).
The rest of this paper is organised as follows. Section 2 provides literature review

on heuristics of single-objective optimisation and trade-off balancing in no-wait flow
shop scheduling. After formulating the problems in section 3, section 4 presents the
programming logic and detailed steps of our TOB heuristic with an illustrative ex-
ample. Section 5 provides the computational results and analysis. The conclusion and
future work are discussed in section 6.

2. Literature Review

We first present the current status of heuristics for Cmax and TCT minimisations,
respectively, in no-wait flow shop scheduling problems. Afterwards, we provide our
literature review on trade-off balancing related with no-wait flow shop scheduing prob-
lems. For further details about prior research, please see Ruiz and Allahverdi (2009)
and Samarghandi and ElMekkawy (2012) for no-wait flow shop scheduling, and see
Cortés, Garćıa, and Hernández (2012), Cohn et al. (2010) and Jungwattanakit et al.
(2009) for trade-off balancing.

2.1. Single-objective heuristics

In general, meta-heuristics take long computation times to generate near-optimal so-
lutions, which prevents their application in industry. We focus on the development of
constructive heuristics, which provide good solutions with shorter computation times.

For no-wait flow shop scheduling problems to min(Cmax), based on the objective
increment method, Li, Wang, and Wu (2008) proposed a composite heuristic (CH),
and experimental results showed that the CH heuristic performed better than the GR
heuristic by Gangadharan and Rajendran (1993) and RAJ heuristic by Rajendran
(1994). Laha and Chakraborty (2009) proposed a constructive heuristic (LC) to solve
the same problem. The computational results showed that the LC heuristic was signif-
icantly better than the GR, RAJ and two other compared heuristics. Ye, Li, and Miao
(2016) proposed a constructive heuristic (the ADT heuristic) to minimise makespan,
and their experimental results showed that the ADT heuristic performed better than
the GR, RAJ and the modified NEH heuristics (Nawaz, Enscore, and Ham 1983). Re-
cently, Ye, Li, and Abedini (2017) proposed an effective heuristic (the AIT heuristic)
to min(Cmax) for no-wait flow shop scheduling problems. In the AIT heuristic, they
treated current and future idle time differently to generate the initial sequence, and
use insertion and neighborhood exchanging techniques to further improve the perfor-
mance. Based on their case studies, the AIT heuristic performed better than the ADT,
CH and LC heuristics.

For no-wait flow shop scheduling problems to min(TCT ), Aldowaisan and Allahverdi
(2004) proposed six improved heuristics by using three different search methods, first
by the same insertion scheme as in the NEH heuristic, second by the same insertion
technique as in Rajendran and Ziegler (1997), and third by the adjacent pair-wise
neighborhood exchanging method. Among the six improved heuristics, the proposed
heuristic with NEH-insertion and pair-wise exchange techniques (PH1(p)) performed
significantly better than the RC heuristic proposed by Rajendran and Chaudhuri
(1990) and the genetic algorithm proposed by Chen, Neppalli, and Aljaber (1996).
Framinan, Nagano, and Moccellin (2010) proposed an FNM constructive heuristic
to min(TCT ), and the results of their case studies showed that the FNM heuristic
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performed better than the PH1(p) heurisitc, and the heuristics proposed by Bertolissi
(2000), and by Fink and Voß (2003). In 2014, Laha, Gupta, and Sapkal (2014) proposed
a penalty-shift-insertion-based (PSI) algorithm and the PSI algorithm performed bet-
ter than the RC, PH1(p) heuristics, and the heuristic proposed by Bertolissi (2000).
Meanwhile, Laha and Sapkal (2014) proposed an improved LS heuristic, and results
showed that the LS heuristic performed better than the PH1(p) and FNM heuristics.
More recently, Ye et al. (2017) proposed the current and future idletime (CFI) heuris-
tic to min(TCT ) in a no-wait flow shop. Their computational results showed that the
CFI heuristic performed better than the PH1(p), FNM and LS heuristics.

Based on the literature review of single-objective heuristics, the AIT and CFI heuris-
tics are currently the best-known heuristics to min(Cmax) and min(TCT ), respectively.
Both AIT and CFI heuristics consider the current and future idle times together to
construct the initial sequence, and they introduce the sequence lever effect to their
heuristics which can generate better performances. However, neither of them takes
machine lever effects into consideration in their heuristics, which is good to min(Cmax)
or min(TCT ). Therefore, to systematically analyse the effects of different factors on
the trade-off balancing, we introduce a factorization scheme to handle those different
factors in section 4.1, including objectives, idle times, sequence lever and machine lever
effects, and to find the best combination to min(Cmax), min(TCT ), and min(TO).

2.2. Trade-off balancing between Cmax and TCT

The literauture on multi-objective combinatorial optimisation for no-wait flow shop
scheduling is vast. Details about total tardiness and Cmax minimisations can be found
in Allahverdi, Aydilek, and Aydilek (2018), details about minimising both weighted
mean completion time and weighted mean taridness can be found in Tavakkoli-
Moghaddam, Rahimi-Vahed, and Mirzaei (2008), and details about Cmax and max-
imum tardiness minimisation in no-wait flow shop scheduling can be found in Pan,
Wang, and Qian (2009). To focus on the problem we study, we provide a limited review
of bi-objectives for Cmax and TCT . For trade-off balancing between Cmax and TCT ,
Li, Mitchell, and Nault (2014) have proved the inconsistency between maximum and
total completion time in permutation flow shop scheduling, which means minimisation
of Cmax does not necessarily minimise TCT , and vice versa. Dang (2017) proposed a
current and future deviation heuristic to balance trade-offs beteen Cmax and TCT in
the general permutation flow shop. In no-wait flow shop scheduling, Aydilek and Al-
lahverdi (2012) and Allahverdi and Aydilek (2013) used the constrained optimisation
approach to minimise both Cmax and TCT for no-wait flow shop scheduling. Specifi-
cally, Aydilek and Allahverdi (2012) considered min(Cmax) subject to a mean comple-
tion time constraint. In contrast, Allahverdi and Aydilek (2013) considered min(TCT )
subject to a Cmax constraint. More recently, Allahverdi and Aydilek (2014) address
the same problem as in Allahverdi and Aydilek (2013) except that the assumption of
zero setup times is relaxed. The heuristic proposed by Allahverdi and Aydilek (2014)
is significantly better than the heuristic of Allahverdi and Aydilek (2013) when the
setup time is zero. However, such constrained optimisation approach has some funda-
mental limitations. For example, those constraints may affect the solution space where
optimal solutions exist.

Apart from the constrained optimisation approach, the utility approach has been
adopted by converting two different objectives to a single criterion. Allahverdi and Al-
dowaisan (2002) proposed the PAAH heuristic to address the problem of minimising
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maximum and total completion time by reducing the problem into a single criterion.
In the PAAH heuristic, a trade-off function TO = α · Cmax + (1 − α) · TCT was de-
veloped, where α is the weight on Cmax changing from 0 to 1, and the sequence with
minimum TO is selected and attached to the current partial sequence. The PAAH
heuristic performed better than the best existing heuristics at that time. In the above
TO function, the authors directly operate on completion times to sequence jobs at
production line level. However, the magnitudes of Cmax and TCT are not the same,
which affects the accuracy of the trade-off function. Laha and Gupta (2016) proposed
a Hungarian penalty-based construction method to minimise Cmax and TCT . The
computational experiment shows that the proposed method performs better than the
state-of-the-art heuristics. However, in their method, they did not address the rela-
tionship between the Cmax and TCT and did not optimise two objectives together
when constructing sequences. More recently, Li, Nault, and Ye (2019) proposed a cur-
rent and future deviations (CFD) heuristic to balance the trade-off between Cmax and
TCT in permutation flow shop scheduling. The differences between the CFD heuristic
and our TOB heuristic are threefold: (1) In the CFD heuristic, sequencing is mainly
based on normalised deviations, and deviations are normalised based on calculated
lower and upper bounds, which makes the CFD heuristic sensitive to the accuracy
of bound calculations. In our TOB heuristic, sequencing is based on the mathemati-
cal relationship between Cmax and TCT , which makes our TOB heuristic robust. (2)
When generating the inital sequence, the CFD heuristic uses the index function based
on normalised deviations while our TOB heuristic uses the index function directly
based on idle times, which is inspired by Framinan, Leisten, and Ruiz-Usano (2002)
and Ye et al. (2017). (3) The CFD heuristic only adopts NEH insertion technique to
further improve the solution quality, while our TOB heuristic uses both NEH inser-
tion and neighborhood exchanging techniques to improve the solution quality without
increasing computational complexity.

In summary, to effectively evaluate the trade-off between Cmax and TCT , we adopt
the utility approach and propose a novel estimation method to normalise Cmax and
TCT to the same magnitude for no-wait flow shop scheduling.

3. Problem Formulation

We first introduce our notation and describe the mathematical formulations of Cmax
and TCT . In addition, the assumptions in our problem setting are presented.

For n-job m-machine no-wait flow shop scheduling, we use the following notation:

n: the number of jobs; 

m: the number of machines; 

π: a sequence of n jobs, π = [J1, J2, …, Jj-1, Jj, …, Jn]; 

pj,i: the processing time of job j on machine i, where j=1,…,n and i=1,…,m; 

Cj,i: the completion time of job j on machine i; 

dj – 1,j: the distance between the completion times of two adjacent jobs on the last machine. 

 
The completion time of job j on machine i (Cj,i) can be calculated by Eq. (1)(Reddi
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and Ramamoorthy 1972):

Cj,i = Cj−1,m +

i∑
k=1

pj,k − min
i=1,...,m

( i−1∑
k=1

pj,k +

m∑
k=i+1

pj−1,k

)
, (1)

where
∑0

k=1 pj,k = 0 and
∑m

k=m+1 pj,k = 0. The distance between the completion
times of two adjacent jobs on the last machine (dj−1,j) can be calculated by Eq. (2):

dij−1,j = Cj,m − Cj−1,m =

m∑
k=1

pj,k − min
i=1,...,m

( i−1∑
k=1

pj,k +

m∑
k=i+1

pj−1,k

)

= max
i=1,...,m

( m∑
k=1

pj,k −
i−1∑
k=1

pj,k −
m∑

k=i+1

pj−1,k

)
= max

i=1,...,m

( m∑
k=1

pj,k −
m∑

k=i+1

pj−1,k

)
.

(2)

From Eq. (2), the dj−1,j depends only on two adjacent jobs, but not on the positions
of other jobs in the sequence, thus a pre-calculated matrix Dn×n can provide val-
ues of dj−1,j for any two adjacent jobs. Although the calculation of matrix Dn×n is
not sequence dependent, the calculations of Cmax and TCT are sequence dependent.
Therefore, the Cmax and TCT for a given sequence π can be calculated by Eq. (3)
and Eq. (4):

Cmax,π =

m∑
i=1

pπ(1),i +

n∑
j=2

Dπ(j−1),π(j), (3)

TCTπ = Cπ(1),m + Cπ(2),m + ...+ Cπ(n),m

=

m∑
i=1

pπ(1),i +

n∑
j=2

( m∑
i=1

pπ(1),i +

j∑
k=2

Dπ(k−1),π(k)

)

= n

m∑
i=1

pπ(1),i +

n∑
j=2

j∑
k=2

Dπ(k−1),π(k)

= n

m∑
i=1

pπ(1),i +

2∑
k=2

Dπ(k−1),π(k) + ...+

n∑
k=2

Dπ(k−1),π(k)

= n

m∑
i=1

pπ(1),i + (n− 1)Dπ(1),π(2) + ...+Dπ(n−1),π(n)

= n

m∑
i=1

pπ(1),i +

n∑
j=2

(n− j + 1)Dπ(j−1),π(j).

(4)

The following assumptions are introduced to address the no-wait flow shop schedul-
ing problem. The processing time of job j on machine i, pj,i, is known. The set-up
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times and the transportation times are included in the processing times. In addition,
all jobs are available to be processed at time zero on the first machine, each job can
only be processed once and only once on each machine, each machine can process only
one job at a time, and we assume there is no machine breakdown. Once a job starts to
be processed, it cannot be interrupted before completion, which means no preemption.
Based on these assumptions, our objective is to construct a heuristic which generates
a sequence of jobs such that trade-offs between Cmax and TCT are minimised.

4. Methodology

In this section, we first present the factorization scheme including four different factors
in our programming logic, second provide the steps of the initial sequence algorithm,
and third propose our TOB heuristic. Finally, an example is used to illustrate the
proposed method.

4.1. Factors in our programming logic

Four factors in our heuristic development, including objectives, idle times, sequence
lever, and machine lever, have impacts on balancing trade-offs at the operational level
between Cmax and TCT . The options for each factor are summarized in Table 1.

[Table 1 about here.]

For Objective, we would like to see how combinations of other factors affect Cmax
and TCT in no-wait flow shops.

For Idle Time, we would like to see how idle times at current position and future
position affect trade-off balancing. The mathematical definitions of current idle time
(CI) and future idle times (FI) for a job j are:

CI(j) =

m∑
i=1

(Cj,i − pj,i − Ck−1,i), (5)

FI(j) =

m∑
i=1

(m− i+ 1)(Ck+1,i −APTi − Ck,i), (6)

where k is the position index, j is the job index, i is the machine index. Cj,i is the
completion time of job j on machine i, Ck,i is the completion time of the job at
position k on machine i, pj,i is the processing time of job j on machine i, and APTi is
the average processing time of all unscheduled jobs on machine i.

The CI means we only consider the current idle times and FI means we only
consider the future idle times when we construct the initial sequence. CI ∪ FI means
we consider both current and future idle times when we construct the initial sequence.

For Sequence Lever, we would like to see how idle times on different parts of a
sequence affect trade-off balancing. The S1 means we put higher weight on idle times
in the head of the sequence than those in the tail of the sequence. The Sn means we
put higher weight on idle times in the tail of the sequence than those in the head of

7



the sequence. The ∅ means we put equal weight on idle times in both head and tail of
the sequence.

For Machine Lever, we would like to see how idle times on different machines affect
trade-off balancing. There are two ways to put a fulcrum on an m-machine production
line. Putting a fulcrum on the first machine, M1, increases the impact of idle times
on succeeding machines relative to those on preceding machines. Putting a fulcrum
on the last machine, Mm, means the relative impacts of idle times are reversed. The
∅ means we assume the idle times have the same impact on each machine.

In total, there are 54 = 2 · 3 · 3 · 3 possible combinations of four factors. Define a
4-tuple as [Obj, Idle time, Sequence(·), Machine(·)], where Obj indicates an Objective,
idle time indicates an option in Idle Time, Sequence indicates an option in Sequence
Lever, its (·) means an option in Idle Time, Machine indicates an option in Machine
Lever, its (·) means an option in Idle Time.

Based on this format, we recommend the following factor combination for initial
sequence algorithm that, using an index function for makespan (IFCmax

j ), is generated

by [Cmax, CI, S1(CI), ∅]. This means for min(Cmax) only current idle times are consid-
ered with a lever effect of S1. The index function for total completion time (IF TCTj )
is generated by [TCT,CI ∪ FI, S1(CI),Mm(FI)]. This means for min(TCT ) both
current and future idle times are considered and with lever effects of S1 on CI and of
Mm on FI.

Mathematically, calculations of IFCmax

j and IF TCTj for our TOB heuristic are sum-
marized as follows:

IFCmax

j = (n− k) · CI(j), (7)

IF TCTj = (n− k) · CI(j) + FI(j), (8)

where the k is the position index while sequencing jobs. By assigning a weighting
factor α = 0.0 : 0.1 : 1.0 on IFCmax

j to minimise Cmax, we can choose a job with the
minimum sum of weighted idle times while constructing the initial sequence, which is
defined as:

IF TOj = αIFCmax

j + (1− α)IF TCTj

= α(n− k)CI(j) + (1− α)
(
(n− k)CI(j) + FI(j)

)
= (n− k)CI(j) + (1− α)FI(j).

(9)

4.2. Initial Sequence Algorithm

Based on the factors in heuristic development at the operational level, the steps for
the initial sequence algorithm (ISA) are as follows:

(1) Set the position index k=1, the set of sequenced jobs S=∅ and the set of unse-
quenced jobs U={all jobs}.

(2) Select the j th job (denoted as J[j] in U (j=1,···,n−k+1), place it into the position
k in S, and calculate the average processing time (APTi) of all jobs in U except
the selected J[j] on each machine, where APTi=

(∑
z∈U pz,i − p[j],i

)
/
(
| U | −1

)
,

i = 1, ...,m, and p[j],i is the processing time of j th job in the sequence on machine
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i. Set up an artificial job, and its processing time on each machine equals to APTi.
Append this artificial job to J[j], which means the artificial job is temporarily
located on the (k+1)th position in S.

(3) Calculate the idle time between (k−1)th and J[j] job in S, which is considered
as the current idle time CI(j)=

∑m
i=1(Cj,i − pj,i − Ck−1,i) , where C0,i = 0 ∀ i.

Calculate the idle time between J[j] and the artificial job, which is regarded as
the future idle time FI(j)=

∑m
i=1(m− i+ 1)(Ck+1,i −APTi − Ck,i), adding the

machine lever (Mm) effect.
(4) For j=1,· · ·,n−k+1, each job in U has its own index function value calculated

by Eq.(9), and we remove the job which has the minimum value of IF TOj from
U and put it into the kth position in S. Set k=k+1.

(5) If k<n, go to Step 2, otherwise, append the last one job in U to the last position
in S, and output S as the initial sequence π0.

4.3. TOB heuristic

The techniques of insertion and neighborhood exchanging are used to improve solu-
tions found by the ISA. In addition, when using the neighborhood exchanging tech-
nique, objective increment methods are used to calculate the increment of makespan
(∆Cmax) and total completion time (∆TCT ). These methods reduce the computa-
tional complexity of calculating Cmax and TCT from O(n) to O(1). The calculations
for ∆Cmax and ∆TCT can be found in Li, Wang, and Wu (2008) and in Ye et al.
(2017), respectively.

After generating an initial sequence, we reconstruct the sequence based on the
following in Eq. (10):

Ω = α ·
(Cmax · l +

∑l
k=1

∑m
i=1 p[k],i)

2
+ (1− α) · TCT, (10)

where l is the number of jobs in the given sequence, and α = 0.0 : 0.1 : 1.0 represents
a preference for min(Cmax) at the production line level. We consider that preferences
at both operational and production line levels should be consistent to obtain good
solutions. In addition, Cmax is the maximum completion time for the given sequence,∑l

k=1

∑m
i=1 p[k],i is the sum of processing times for the given sequence on all machines,

and TCT is the total completion time for the given sequence. The given sequence
could be the partial sequence when reconstructing the sequence with insertion and
exchange techniques or the sequence with all scheduled jobs.

Recall that values of both Cmax and TCT are not in the same magnitude at the
production line level. Therefore, to normalise both Cmax and TCT to the same scale,
we estimate the sum of total processing time on all machines (

∑l
k=1

∑m
i=1 pk,i) and

l times the makespan (Cmax) is around a half of the value for a sequence’s total
completion time (TCT ). With this estimation, we expect equivalent scales with respect
to both Cmax and TCT . The derivation of Eq. (10) can be found in Appendix A.

The steps of the proposed TOB heuristic in our study are as follows:

(1) Compute the distance matrix Dn×n and obtain the initial sequence π0 using
ISA. Given the value of α, let Ω0 be the estimated value of sequence π0. Set the
current best estimated value Ωb = Ω0, the current best sequence πb=π0, and the
number of iterations r = 1.

(2) Select the first two jobs from πb, and choose the partial sequence with a smaller
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Ω based on Eq. (10).
(3) Apply the NEH insertion technique (Nawaz, Enscore, and Ham 1983) to the

obtained partial sequences, select the best partial sequence with minimum Ω as
current sequence.

(4) Exchange each job with the remaining jobs on all positions in the current se-
quence. Among sequences generated by exchanging, the objective increment
method is used to calculate ∆Cmax and ∆TCT . If one sequence yields the small-
est negative ∆Ω=α · ∆Cmax·l

2 + (1−α) ·∆TCT (where l is the number of jobs in
the current sequence), then set this sequence as the current sequence. Otherwise,
keep the current sequence.

(5) Repeat Steps 3 and 4 until all jobs are scheduled, and set the current sequence
as πr with Ωr.

(6) If Ωr < Ωb, then set Ωb=Ωr and πb=πr.
(7) For j=1 to n−1, insert the j th job in πr into n−j possible positions in the

forward direction. If these sequences generate a lower Ω than Ωb, then update
πb and Ωb.

(8) Update r = r + 1. If r ≤ 6, then return to Step 2; otherwise, go to Step 9.
(9) Output the final πb.

The main computational burden of the TOB heuristic is determined by the NEH
insertion and neighborhood exchanging techniques in Step 3. The computational com-
plexity for the NEH insertion is O(n3) including calculating Ω when selecting the best
insertion position. The computational complexity for the neighborhood exchanging
technique is also O(n3) including calculating ∆Ω with O(1) when selecting the best
exchanged pair. Therefore, the overall computational complexity of the TOB heuristic
is O(n3), which is the same as those in the AIT and CFI heuristics.

4.4. An illustrative example

In this subsection, we provide an illustrative example to elaborate our proposed
methodology. We consider a scenario in which a task including five jobs is processed
on four machines. The processing times for each job on each machine are provided in
Table 2 and α is assumed to be 0.5.

[Table 2 about here.]

4.4.1. Initial Sequence Algorithm

(1) Set S = and the U = {J1, J2, J3, J4, J5}.
(2) Consider J1 in the first position of S, and average processing times of J2, J3, J4,

and J5 on each machine are computed as APTi = [18, 15.25, 13.75, 15.5], which
is equal to the artificial job. Append this artificial job to J1, and we obtain the
current idle time of 47 and future idle time 30.5 by adding the machine lever
effects. The index function value for J1, namely IF TO1 , is 203.25. Similarly, we can
consider other jobs in the first position of S and obtain IF TO2 = 209.375, IF TO3 =
195.5, IF TO4 = 231.25, and IF TO5 = 243.375. Hence, we remove J3 that has the
minimum IF value from U and place it into the first position of S. The updated
S = {J3} and U = {J1, J2, J4, J5}.

(3) For the second position in S, we do the similar procedure as Steps 2 and 3
in ISA, and obtain the index function values for each job in U , which are
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IF = [150.33, 52, 162.17, 111.17]. Hence, we remove J2 from U and place it into
the second position of S. Following the same procedure, we generate the initial
sequence π0 as {J3, J2, J1, J5, J4}.

4.4.2. TOB heuristic

(1) From ISA, we obtained the initial sequence π0 = {J3, J2, J1, J5, J4} and Ω0 is
504. Set Ωb = 504, πb = {J3, J2, J1, J5, J4} and r = 1.

(2) The sequence from Steps 2 -7 in the TOB heuristic is π1 = {J1, J5, J4, J3, J2} and
Ω1 = 495.25. Because 495.25 is smaller than 504, we update Ωb = 492.25, πb =
{J1, J5, J4, J3, J2}.

(3) In the iterations from 2 to 6, both Ωb and πb remain unchanged. Therefore, the
final sequence is {J1, J5, J4, J3, J2} with Ω value of 495.25.

5. Computational Experiments

In this section, computational experiments are conducted to verify the effectiveness of
our TOB heuristic on balancing trade-offs between min(Cmax) and min(TCT ), based
on the classic Taillard’s benchmarks and one-year historical data from UKHC. We
present the results for each dataset, and then we discuss the inconsistency between
Cmax and TCT among different sequences.

5.1. Taillard’s Benchmarks

Taillard’s benchmarks (Taillard 1993) are classic in flow shop scheduling, and are
commonly used to test scheduling methods on min(Cmax) and on min(TCT ). There
are 12 scales in Taillard’s benchmarks, ranging from a 20-job 5-machine flow line to a
500-job 20-machine flow line, 10 instances in each scale, and 120 instances in total.

Because min(Cmax) and min(TCT ) are NP -hard problems and current literature
only provides the best solutions for 110 instances, the best and worst solutions are
generated based on actual performances of the AIT, CFI, and TOB(α) heuristics, as
references R. Given the best and worst values of fMIN

o,k and fMAX
o,k for each instance k

and for each objective o, with o = 1 for min(Cmax) and o = 2 for min(TCT ), we can
define a normalised deviation (ND) as follows:

NDo,k(q,R) =
fo,k(q)− fMIN

o,k (R)

fMAX
o,k (R)− fMIN

o,k (R)
· 100, (11)

where fo,k(q) is the solution generated by a sequencing method q. This NDo,k(q,R)
is normalised in the same way as do(x, y) in Czyzżak and Jaszkiewicz (1998). Accord-
ingly, an average normalised deviation for a sequencing method q with the objective
o (ANDo(q,R)) is defined as follows:

ANDo(q,R) =
1

K
·
K∑
k=1

NDo,k(q,R), (12)
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where K is the number of instances, which is 120 in Taillard’s benchmarks.
In addition to ANDs for each objective, a bi-objective indicator is introduced to

evaluate the performance of our TOB heuristic. Based on the NDo,k(q,R) , we define
an indicator dk(q,R) as follows, which is similar to the Pareto distance metric in Xu
et al. (2015), Li et al. (2018) and Tian et al. (2018):

dk(q,R) =
√

(ND1,k(q,R))2 + (ND2,k(q,R))2. (13)

Similarly, an average distance D1(q,R) is defined as follows:

D1(q,R) =
1

K
·
K∑
k=1

dk(q,R). (14)

The D1(q,R) metric measures the average normalised Euclidean distance between
solutions generated by a sequence method q and the reference R. The smaller the
value, the closer to the reference, and the better the performance.

The ANDs on Cmax and TCT objectives and D1(q,R) are provided in Table 3, for
all 120 instances. The minimum values for each metrics are in bold. The p-values of
two-tailed t-tests on AND are also provided in Table 3 against the best sequencing
method, which is TOB(1.0) for Cmax and TOB(0.0) for TCT .

[Table 3 about here.]

For min(Cmax), the TOB (1.0) heuristic has the least average normalised deviation
value of 13.13%, but based on the t-test, the AIT heuristic (13.20%) and TOB(0.9) have
statistically indifferent performance from the TOB (1.0) heuristic on a 95% confidence
interval. In this sense, their performances are equivalent on min(Cmax), although the
AND from TOB(1.0) is smaller than those in the AIT and TOB(0.9) heuristics. For
min(TCT ), the TOB (0.0) heuristic (5.46%) outperforms the CFI heuristic (14.50%),
and the difference is statistically significant at all reasonable p-values. For the D1
metric, when α changes from 0.0 to 0.9, TOB(α) can always achieve smaller distance
D1 than those in the AIT and CFI heuristics. D1 values for both TOB(1.0) and AIT
heuristics are almost the same, which is consistent with the t-test results that both
heuristics are not statistically different.

Using the posteriori approach (Ciavotta, Minella, and Ruiz 2013), we generate a
frontier in Figure 1 based on AND values generated by the TOB(α) across a range
of α, AIT and CFI heuristics. We can clearly see that TOB(0.0) dominates the CFI
heuristic with [75.74, 5.46] for TOB(0.0) and [79.31, 14.50] for the CFI heuristic. In
addition, the TOB(1.0) dominates the AIT heuristic. In Figure 1, the points between
TOB(1.0) and AIT heuristics are very close but such slight dominance can be found
from Table 3: [13.13, 88.24] for TOB(1.0) and [13.20, 88.25] for the AIT heuristic.

[Figure 1 about here.]

Average computation times of the TOB(0.5), AIT and CFI heuristics are also pre-
sented in Table 4 based on each scale of 10 instances in Taillard’s benchmarks. The
Matlab code of all three heuristics were run on a Dell personal computer with 16.0
GB RAM and a CPU of 2.40GHz. We can see that the AIT heuristic took the least
CPU time and average computation times for both CFI and TOB(0.5) heuristics are
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comparable. Recall that all three heursitics have the same computational complexity;
the difference between the AIT and TOB(0.5) or CFI heuristic can be explained by
the objective increment method since it takes more time to check the conditions when
minimising TCT or Ω.

[Table 4 about here.]

5.2. Historical Data from UKHC

To validate our TOB heuristic for ORs scheduling across the periop process, we carry
out a case study based on historical data from the UKHC in which the first-come-first-
serve (FCFS) rule is applied. The periop process can be divided into three main stages,
including preoperatives, intraoperatives and postoperatives (Gupta 2007). Patients are
not supposed to wait during the process, especially from the intraoperatives stage to
postoperatives stage, which leads to high operating room costs. Therefore, immediately
after the surgery in the intraoperatives stage, patients are transferred to the wards for
recovery. Therefore, the periop process can be modelled as a three-machine no-wait
flow shop (Hsu, De Matta, and Lee 2003; Ye et al. 2017).

Historical data from UKHC consist of almost 30,000 cases in 365 consecutive days
from 2013 to 2014. UKHC schedules ORs on weekdays, but opens emergency rooms
on weekends and holidays, and thus the number of cases on weekends and holidays
is much less than that on weekdays. Excluding data from weekends and holidays, we
have more than 28,000 cases in 260 days used in our case study.

Utilisation of the periop process and patient flowtime across the periop process,
or average completion time (C), are used to evaluate performances of OR scheduling
methods. The relative performances of the AIT, CFI and TOB(0.5) heuristics are
provided in Table 5, compared to that of UKHC.

[Table 5 about here.]

In Table 5, we can see that the TOB (0.5) heuristic can achieve 78.48% utili-
sation, larger than UKHC’s 75.04%. Moreover, the patient flow time for the TOB
(0.5) is much smaller than UKHC’s, which the improvement is calculated by (615.4
− 549.2)/615.4=10.75%. The 10.75% improvement indicates that an additional 3,000
patients could be served in a year if our TOB (0.5) heuristic was used for OR schedul-
ing. However, there are many other factors affecting OR scheduling and control, such
as emergencies, the availability of patients, equipment and resources, etc.

A different measure of performance is whether the process is ”under control”. Run
charts of utilisation that compares our TOB (0.5) heuristic with UKHC are shown in
Figure 2.

[Figure 2 about here.]

[Figure 3 about here.]

From Figure 2, we can see that utilisations of the periop process achieved by our
TOB heuristic are under better control, with only one point out of control limits in the
X-bar chart for the average performance, or in the R chart for performance variation
ranges. In constrast, the utilisation of the periop process at UKHC sometimes is out
of control, as indicated by two points below the lower control limit (LCL), two points
above the upper control limit (UCL) in the X-bar chart and by two points above UCL

13



in the R-chart.
Run charts for average patient flowtime are also shown in Figure 3. Figure 3 shows

that patient flowtime is under better control with our TOB (0.5) heuristic, noting the
much tighter control limits with our TOB (0.5) heuristic than the control limits from
UKHC data.

In addition to run charts, we further generate process capability charts in Table 6
for TOB(0.0, 0.5, 1.0) on utilisation and patient flowtime to see if the periop process
is better under control. According to Montgomery (2007), a process capability index
(Cpk) is used to verify if the process drifts way from the average and tends to be out of
control, given Cpk = min[(USL−µ)/(3 · σ), (µ−LSL)/(3 · σ)], where µ is the average
of historical process performance, σ is the standard deviation of historical process
performance, and USL and LSL are upper and lower specification limits respectively.
Given USL and LSL for expected performance, the larger the Cpk values, the more
centered the process is under control in terms of µ and σ.

To compare three methods of TOB(0.0, 0.5, 1.0) on trade-off balancing, we generate
specifications according to the performance of [78.48%, 549.2] by TOB(0.5) with one
standard deviation. The process capabilities of three methods are summarized in Table
6. From Table 6, we can make the following observations: the Util of TOB(0.5) is
most centered while the Util of TOB(0.0) shifts slightly to the right and the Util of
TOB(1.0) shifts slightly to the left. This is supported by calculations of Cpk, which
are 0.638 for TOB(0.0), 0.700 for TOB(0.5), and 0.695 for TOB(1.0), respectively.
Similarly, the PtF of TOB(0.5) is most centered among three methods, compared to
that of TOB(0.0) shifting slightly to the right and that of TOB(1.0) shifting severely to
the left. This is also supported by calculations of Cpk, which are 0.511 for TOB(0.0),
0.733 for TOB(0.5), and −0.351 for TOB(1.0), respectively. Moreover, the negative
value −0.351 of TOB(1.0) indicates that the process is out of control in terms of
patient flow if the OR manager simply maximises the utilisation.

[Table 6 about here.]

Overall, through our case study on historical data from UKHC, the TOB(0.5) heuris-
tic could improve the current practice at UKHC in terms of utilisation and patient
flow. In addition, the performance of the peri-op process could be more stable based
on the results of run charts and process capability of Cpk.

5.3. Inconsistency among min(Cmax), min(TCT ) and min(TO)

To confirm the inconsistency among min(Cmax), min(TCT ), and min(TO) in gener-
ating sequences, we run our TOB heuristic with α = 1.0 to generate the sequence for
min(Cmax), with α = 0.0 to generate the sequence for min(TCT ), and with α = 0.5
to generate the sequence for min(TO). We do this for both Taillard’s benchmarks and
UKHC historical data. For each dataset, we compute the Spearman rank correlation
coefficient ρ between the sequences, and the results are shown in Table 7.

[Table 7 about here.]

In Table 7, 0.0 vs. 1.0 means the correlation between min(TCT ) and min(Cmax),
0.0 vs. 0.5 means that between min(TCT ) and min(TO), and 0.5 vs. 1.0 means that
between min(TO) and min(Cmax). It is obvious that the inconsistency exists between
min(TCT ) and min(Cmax) with small Spearman rank correlation coefficients that are
not significantly different from zero for both datasets. As the number of machines m
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is small, but n is large, the empirical inconsistency between min(TO) andmin(Cmax)
is obvious for the UKHC data set with a Spearman ρ of −0.0064, but the inconsis-
tency between min(TO) and min(TCT ) is less obvious with a Spearman ρ of 0.2295.
However, when both n and m are large, the inconsistencies are obvious for Taillard’s
benchmarks with Spearman ρ of 0.0624 and 0.0700, respectively. Thus, using our
TOB heuristic with extreme weights across our datasets, 1.0 for min(Cmax) and 0.0 for
min(TCT ), we find that the empirical inconsistency exists not only between min(Cmax)
and min(TCT ), but also between min(TO) and min(Cmax) and between min(TCT )
and min(TO) as well.

6. Conclusion

We propose a trade-off balancing (TOB) heuristic to minimise the weighted sum of
maximum and total completion time based on machine idle times. First, we introduce a
factorization scheme to construct the initial sequence at the operational level. Second,
we propose the estimation method to establish the mathematical relationship between
the objectives of Cmax and TCT at the production line level, and reconstruct the
sequence in the improvement phase of our TOB heuristic. Third, we demonstrate the
inconsistency beween Cmax and TCT in the no-wait flow shop by computing Spearman
rank order correlations among sequences. Using the same preference α on Cmax to
model coupled machine idle times at the operational level and balance trade-offs at
the production line level, we show that our TOB heuristic is sufficiently flexible to
address a variety of management concerns.

Through computational experiments on 120 instances in Taillard’s benchmarks, we
show that our TOB heuristic outperforms the AIT and CFI heuristics on min(Cmax)
and min(TCT ), respectively. Based on a real case study of one-year historical data
from UKHC, utilisation and patient flowtime of the periop process are improved, and
the process is better under control using our TOB heuristic.

For future work, our first direction is to relax the assumption that preferences
at operational and production line levels are the same. The second direction is to
propose the adaptive TOB heuristic to achieve robust scheduling because variations
in processing times may occur in practice. The third direction is to separate setup
times from processing times.
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Appendix A. Derivation of the Estimated Equation

To derive the estimated equation between Cmax and TCT when reconstructing se-
quences, we denote the pj,i as the processing time of job j on machine i, Cj,i as the
completion time of job j on machine i, and Ij,m as the idle time between job j−1 and
job j on the last machine m. Here, we assume the given sequence is the sequence with
all scheduled jobs. Therefore, the number of jobs is n. The calculation of TCT can be
described in Eq. (A1), which is the sum of completion times on all jobs.
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TCT =

n∑
j

Cj,m = C1,m + C2,m + ...+ Cn,m. (A1)

Also, the calculation of makespan can be described in Eq. (A2), which consists of
the sum of processing times of the first job in the sequence on all machines, the sum
of processing times from the second job to the last job of the sequence on the last
machine, and the sum of idle time from the second job to the last job of the sequence
on the last machine.

Cmax =

m∑
i=1

p1,i +

n∑
j=1

pj,m +

n∑
j=2

Ij,m. (A2)

As the equations (A1) and (A2) are sequence-dependent, in order to estimate the
relationship between Cmax and TCT , we have three-step estimations. The first step is
to estimate the processing time on the first position of the sequence, denoted as up,
the second step is to estimate the idle time on the last machine, denoted as ue, and
the third step is to estimate the processing time on the last machine, denoted as um.
These three-step estimations are mathematically described in the following equations:

up = p̃1,i =

∑n
j=1

∑m
i=1 pj,i

nm
, (A3)

ue = Ĩj,m =

∑n
j=1 Ij,m

n
, (A4)

um = p̃j,m =

∑n
j=1 pj,m

n
. (A5)

Therefore, we re-model the Cmax using the above equations:

Cmax = Cn,m = mup + (n− 1)um + (n− 1)ue. (A6)

where the makespan is composed of three parts: total processing times of the job on
the first position of the sequence on all machines, processing times of n − 1 jobs on
the last machine, and total idle times on the last machine.

Similarly, we can re-model the TCT based on Eq. (A2) and the above equations:

TCT =

n∑
j

Cj,m = C1,m + C2,m + ...+ Cn,m

= mup +mup + um + ue + ...+mup + (n− 1)um + (n− 1)ue

= nmup +
n(n− 1)

2
um +

n(n− 1)

2
ue.

(A7)
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By multiplying n/2 with Eq. (A6), we obtain

n

2
Cmax =

nmup
2

+
n(n− 1)

2
um +

n(n− 1)

2
ue. (A8)

Combining Eq. (A7) and Eq. (A8), we can obtain the relationship between Cmax
and TCT as follows:

TCT =
n

2
Cmax +

nm

2
up =

n

2
Cmax +

∑n
j=1

∑m
i=1 pj,i

2
. (A9)

Therefore, in our TOB heuristic development, we define the estimated equation as
shown in Eq. (A10):

Ω = α ·
(Cmax · n+

∑n
j=1

∑m
i=1 pj,i)

2
+ (1− α) · TCT, (A10)

where α = 0.0 : 0.1 : 1.0 represents a preference on min(Cmax). Notice that when
the number of jobs is n in the sequence, the value of

∑n
j=1

∑m
i=1 pj,i is sequence-

independent, and the p[j],i can be replaced with pj,i .
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Table 1.: Four factors in balancing trade-offs

Factors Options
Objective [Cmax, TCT ]
Idle time [{CI}, {FI}, {CI ∪ FI}]

Sequence Lever [S1, Sn, ∅]
Machine Lever [M1,Mm, ∅]
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Table 2.: Processing times of a 5-job 4-machine example

M1 M2 M3 M4

J1 12 24 12 13
J2 20 3 19 11
J3 19 20 3 15
J4 14 23 16 14
J5 19 15 17 22
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Table 3.: Performance metrics by TOB(α), AIT and CFI heuristics on Taillard’s bench-
marks (%)

Metrics
TOB(α)

AIT CFI
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AND for Cmax 75.74 46.55 42.95 38.96 32.28 26.46 26.91 21.07 16.65 14.47 13.13 13.20 79.31
p-value by TOB(1.0) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.33 - 0.32 0.00
AND for TCT 5.46 13.21 21.06 27.53 33.43 40.47 48.00 53.97 65.83 71.75 88.24 88.25 14.50

p-value by TOB(0.0) - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D1 76.49 50.98 52.27 53.21 51.84 53.81 62.06 62.89 70.56 74.72 90.12 90.14 83.28
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Table 4.: Average computation times for the AIT, CFI, and TOB(0.5) heuristics in
Taillard’s benchmarks (Units: seconds)

n by m AIT CFI TOB (0.5)
20 by 5 0.09 0.15 0.08
20 by 10 0.02 0.11 0.06
20 by 20 0.03 0.08 0.07
50 by 5 0.08 0.49 0.47
50 by 10 0.08 0.55 0.48
50 by 20 0.08 0.52 0.49
100 by 5 0.32 2.81 2.93
100 by 10 0.31 2.82 2.91
100 by20 0.36 2.86 2.95
200 by 10 2.03 20.56 21.16
200 by 20 2.17 20.77 21.33
500 by 20 33.15 356.59 363.64
Average 3.23 34.02 34.71
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Table 5.: Utilisation (%) and Average Completion Times (minute)

AIT CFI TOB (0.5) UKHC
Util Avg. 78.52 77.91 78.48 75.04

StD 5.95 5.89 5.89 5.30
C Avg. 560.1 544.6 549.2 615.4

StD 43.4 41.6 41.6 56.3
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Table 6.: Process Capability Charts for Trade-off Balancing on UKHC Data

TOB(α) Util PtF

(0.0) 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88
0

5

10

15
Probability Between Limits = 0.96225

500 520 540 560 580 600 620
0

0.005

0.01

0.015

0.02

0.025
Probability Between Limits = 0.93329

(0.5) 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9
0

5

10

15
Probability Between Limits = 0.96419

480 500 520 540 560 580 600 620
0

0.005

0.01

0.015

0.02

0.025
Probability Between Limits = 0.9721

(1.0) 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9
0

5

10

15
Probability Between Limits = 0.96284

500 520 540 560 580 600 620 640 660 680 700
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018
Probability Between Limits = 0.14619

26



Table 7.: Spearman’s ρ among sequences for scheduling objectives

Dataset 0.0 vs. 1.0 0.5 vs. 1.0 0.0 vs. 0.5
Taillard’s benchmarks 0.0267 0.0624 0.0700
UKHC historical data −0.0288 −0.0064 0.2295
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Figure 1.: A Frontier Based on AND on Cmax and TCT for Taillard’s benchmark
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Figure 2.: Run charts of utilisation in a perioperative process
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Figure 3.: Run charts of patient flowtime in a perioperative process
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