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Abstract

A Benders decomposition-based method is developed to simultaneously optimize the upstream and the down-

stream of a mineral value chain. Mining blocks representing mineral deposits are dynamically aggregated

based on the dual solution of the sub-problem to reduce the complexity in the upstream mine production

scheduling. The production schedule obtained based on the aggregated scheduling units is then improved

through a moving-window amelioration method. By observing the results of a series of numerical tests, we

show that the proposed method effectively optimizes a mineral value chain by synchronizing the upstream

mine production scheduling and the downstream material flow and process planning. The results of the nu-

merical tests also show that ignoring the market uncertainty can result in the underestimation of profitability

because of the underestimated value of low-grade materials. In order to adapt to the existence of market

uncertainty, the stochastic optimizer suggests a higher processing capacity investment in the processing plant

and a different long-term mine production schedule.
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1. Introduction

For the past decade, the inflation of mining costs and uncertainty in commodity market has made the

natural resource industry increasingly vulnerable. In response, mining firms need to retrain their focus

on long-term planning of the entire value chain including all value-added production operations from the

extraction of raw minerals to the delivery of final products (or commodity). A typical mineral value chain

(MVC) consists of one or more mines, and a material flow circuit that includes waste dumps, material

stockpiles and a processing system transforming raw minerals to commodity.

Usually, optimising a MVC includes the optimization of the upstream mine production schedule (MPS) at
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the mines and the optimization of the downstream material flow and processing plan (MFPP) at the material

flow circuit. The MPS optimization is to optimize when and where to mine over the planning horizon given

a limited mining capacity. Because the valuable element(s) are usually distributed in different areas of a

mine deposit and unevenly, a better MPS can increase the firm’s profitability significantly by improving the

mining sequence when the time value of the money is considered. MPS optimization is challenging for its

large number of decision variables and constraints. A mine deposit is modeled by “blocks” and the number of

blocks that are used to model a typical mine deposit can be tens of thousands or even millions. Additionally,

a large number of slope constraints, or precedence constraints, have to be followed for the excavation of

each block. The research on MPS optimization has focused on developing heuristics to find the near optimal

solution, and a review of literature on MPS optimization can be found in Hochbaum & Chen (2000) and

Newman et al. (2010). The MFPP optimization optimizes the volume of materials that are sent to different

destinations after each processing stage. The complexity of a MFPP optimization depends on the structure

of MVC and the factors considered. The structure of MVC is determined by the material flow circuit, and

can be expanded when other factors, such as outsourcing, closed-loop processing, operational and market

uncertainty, are considered.

Because of the complexity of MPS optimization and MFPP optimization described above, it is difficult

to optimize MPS and MFPP in a unified model using general solvers for constrained programs. In the

literature, two strategies are usually employed for MVC optimization. First, MPS optimization and MFPP

optimization are conducted sequentially. That is, when optimizing MPS, the MFPP is ignored, and when

optimizing MFPP, the MPS is treated as fixed. When MFPP is ignored, the MPS is optimized based on

the value of each block, This is typically computed based on the simple formula, according to Hochbaum &

Chen (2000), as:

bi = extract(i) · recovery · price− ore(i) · proc cost− weight(i) ·mine cost,

where extract(i) is the weight (in tonnes) of extract contained in block i, recovery is the recovery rate,

price is the commodity price (per tonne), ore(i) is the amount of ore contained in block i, proc cost is the

cost of processing a ton of ore, weight(i) is the weight of block i in tonnes, and mine cost is the cost of

mining a ton of rock. In this simple setting, the value of a block only depends on the grade and the weight

of a block, as well as the recovery rate. The commodity price and the processing cost are assumed not to

change with downstream MFPP. The work on MPS optimization with the ‘static’ block values similar to

the definition above can be found from Osanloo et al. (2008), and the recent work on MPS optimization

includes Caccetta & Hill (2003), Chicoisne et al. (2012) and Lamghari & Dimitrakopoulos (2012). After the

MPS is decided, the material output of each period is fixed, which forms the basis for MFPP optimization.

The work on MFPP optimization with fixed production schedule at mines includes Hoerger et al. (1999)

and Zhang & Dimitrakopoulos (2017b). The second stream of research on MVC optimization has focused

on developing heuristics to find the near optimal solution of a unified MVC model. Epstein et al. (2012)
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develop an algorithm that iteratively adds cuts to tighten the linear relaxation of a unified MVC optimization

model so that the binary variables in the original model have binary solutions after solving the relaxed model.

Montiel & Dimitrakopoulos (2015) use Tabu searching to solve a unified MVC model with multiple processing

and transportation options. Goodfellow & Dimitrakopoulos (2016) use both particle swarm optimization

and simulated annealing to optimize a general unified MVC model that accounts for geological uncertainty.

However, because the solution space increases exponentially as the number of variables increases, it is difficult

to guarantee the quality of the obtained solution when the structure of the MVC is complex.

We propose a modified Benders decomposition (BD) method to simultaneously optimize the upstream

MPS and the downstream MFPP of a MVC in order to avoid the complexity incurred in the unified MVC

model. The recent research on MVC optimization using decomposition-based method includes Blom et al.

(2014) and Blom et al. (2016), in which the upstream MPS model and the downstream blending model

are simultaneously optimized by iteratively changing the grade and quality targets assigned to the mines.

However, the objective of their optimization model is to ensure that the processing rate at each facility is

within preset bounds. In the present work, we focus on maximizing the economic value created by the entire

MVC. Hence, the upstream MPS model and the downstream MFPP model are simultaneously optimized

by dynamically changing the values of raw materials extracted at mines. Zhang & Dimitrakopoulos (2017a)

developed a heuristic that dynamically changes the material value to coordinate the optimization of the

upstream and the downstream optimizations, but the information obtained at each iteration is not preserved

so that the convergence is slow. The BD iteration preserves the information obtained in each iteration by

adding cuts generated in all iterations to the master problems.

BD has been widely used to optimize a multistage value chain in different areas and a detailed review of

relevant papers can be found in Rahmaniani et al. (2017). Recent research on BD includes the optimizations

of supply chain (Keyvanshokooh et al., 2016; Kergosien et al., 2017), smart grid (Soares et al., 2017),

networks(de Sá et al., 2017; Mariel & Minner, 2017), and so on. According to the best of our knowledge,

there is still a gap in the literature to apply BD in MVC optimization. In the BD proposed herein, the

master problem, which is a MPS optimization problem, is reduced by aggregating blocks to larger scheduling

units based on the economic value of each block. Because the block value is computed based on the dual

solution of the sub-problem, i.e., the downstream MFPP problem, it actually reflects the margin created by

the block to the entire value chain given the current MPS and MFPP. As BD proceeds, the value of each

block changes dynamically to account for the updated MVC plan.

The paper is organized as follows. In Section 2, a typical MVC is modeled following the convention of

the standard form for BD. In Section 3, the solution method based on BD is proposed. In Section 4, a series

of numerical tests presented to test the efficiency of the proposed solution method and the importance of

integrating of market uncertainty. The conclusions are presented in Section 5.
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2. Mathematical formulation

A MVC planning problem is a two-stage profit maximization problem that can be modeled as standard

form for BD as

max
x,y

c′y + f ′x, (1a)

s.t. Ax +By ≤ b, (1b)

y ∈ Y, (1c)

x ≥ 0. (1d)

In (1), x and y are the vectors of variables. y includes the binary variables that determines the upstream

MPS. x includes the continuous variables that determine the downstream MFPP. The object function, (1a),

maximizes the expected net present value (NPV) obtained during the planning horizon. c and f are the

coefficient vectors relates to y and x, respectively, where c′ and f ′ represent the transposed vectors. The

relationship between y and x is defined in (1b), where A and B are the left-hand-side (LHS) coefficient

matrices for x and y, respectively, and b is the right-hand-side (RHS) constant vector. In (1c), Y defines

the constraints on y.

In order to present our method clearly, we use an example MVC to illustrate the general model proposed

above. The example MVC contains a mine, a number of stockpiles, and a processing plant. However, the

method proposed herein is general and applicable in a multi-mine MVC with a complex material flow circuit.

Following the convention in the general form above, we define the symbols as in Table 1.

[Table 1 about here.]

The MILP that maximizes the MVC’s expected NPV can be formulated as

Maximize −
T∑
t=1

J∑
j=1

I∑
i=1

1

[1 + γ]t
cMi qijyit︸ ︷︷ ︸

(i)

+
1

S

S∑
s=1

T∑
t=1

J∑
j=1

1

[1 + γ]t

[[
ptsgj − cP

][
xMP
jts + xHPjts

]
− cRxHPjts − cHxHjts

]
︸ ︷︷ ︸

(ii)

, (2a)

xMP
jts + xMH

jts −
I∑
i=1

qijyit ≤ 0, ∀j,∀t,∀s, (2b)

T∑
t=1

yit ≤ 1, ∀i, (2c)
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yit −
t∑
t̂=1

yεt̂ ≤ 0, ∀i,∀t,∀ε ∈ Pi, (2d)

I∑
I=1

J∑
j=1

qijyit ≤ y, ∀t, (2e)

I∑
i=1

J∑
j=1

qijyit −
I∑
i=1

J∑
j=1

qijyi,t−1 ≤ ξ, ∀t ∈ {2, . . . , T},∀s, (2f)

yit ∈ {0, 1}, ∀i,∀t (2g)

xHj1s − xMH
j1s ≤ 0, ∀j,∀s, (2h)

xHjts − xHj,t−1,s − xMH
jts + xHPjts ≤ 0, ∀j,∀t ∈ {2, . . . , T},∀s, (2i)

J∑
j=1

[
xMP
jts + xHPjts

]
− xP ≤ 0, ∀t,∀s, (2j)

J∑
j=1

[
gj − gP

] [
xMP
jts + xHPjts

]
≤ 0, ∀t,∀s, (2k)

J∑
j=1

[
gP − gj

] [
xMP
jts + xHPjts

]
≤ 0, ∀t,∀s, (2l)

xMP
jts , x

MH
jts , x

HP
jts , x

H
jts, x

P ≥ 0 ∀i,∀t,∀s. (2m)

In the MVC optimization model (2), the objective function (2a) is to maximize the expected NPV

generated by the MVC over the planning horizon. In the objective function, (i) corresponds to c′y in (1a)

and computes the total discounted mining cost. (ii) corresponds to f ′x in (1a) and computes the total

expected discounted value generates by the downstream processing system. (2b) corresponds to (1b) that

links y and x, and it constrains that in each period, the total amount of materials sent to the downstream

should not exceed the total amount of materials mined in the upstream. (2c) constrains that a block is only

mined in a single period. (2d) constrains that any block is mined after its predecessors. (2e) constrains the

total number of blocks mined in each period to be within the mining capacity. (2f) ensures the feasibility of

the obtained schedule, where ξ is a preset smooting parameter. That is, the mining rate in each period should

not excceed the mining rate in the previous period by too much. In the mining industry, dramatic fluctuation

in production rate is not feasible because it incurs high operating cost by dismissing and recruiting workers,

idling production equipment, and so on. Other indirect costs might also be caused due to environmental

or political reasons, such as waste processing, employment rate, and so on. Because it is hard to quantify

the cost and impact caused by the dramatic fluctuation in the production rate, the smoothing parameter is

added to avoid costly and infeasible solutions. (2h) and (2i) constrain the levels of stockpiled materials at

the end of each period. (2j) constrains the amount of materials processed at each period to be within the

processing capacity invested at the beginning of the planning horizon. (2k) and (2l) constrain the grade of

the blended materials processed during each period to be within a required range.
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In the MVC optimization, because the raw materials mined upstream, no matter whether ore or waste,

always have feasible destinations such as wasted piles, processing plants, stockpiles, and so on, we make the

following assumption:

Assumption 1. In the MVC planning problem, (1), there is always a feasible downstream MFPP, x, given

any feasible upstream MPS, y ∈ Y.

Assumption 1 is true in MVC and other two-stage value chain planning problem if there is an uncapac-

itated channel, e.g., the waste pile herein, to dispose the unwanted yields from upstream. Note that the

waste processing cost is ignored in the example MVC without loss of generality. In the case when the up-

stream problem has feasible solutions that make the downstream problem infeasible, we can ‘soften’ certain

constraints of the downstream problem by adding penalties if those constraints are violated.

3. Solution method

Our solution method uses Benders decomposition (BD) to simultaneously optimize the decomposed MVC

model. In each iteration, the master problem is reduced by aggregating the blocks dynamically based on the

dual solution of the sub-problem. When the reduced master problem is solved, a moving window amelioration

is performed to improve the obtained MPS.

3.1. Benders decomposition

In the original program (1), when the upstream schedule, y, is fixed to ŷ, we can obtain the primal sub

problem as

max
x

f ′x, (3a)

s.t. Ax ≤ b−Bŷ, (3b)

x ≥ 0. (3c)

The dual of the sub problem can be formed as

min
u

[b−Bŷ]′u, (4a)

A′u ≥ f , (4b)

u ≥ 0. (4c)
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According to Assumption 1, because there is always a feasible solution of x for the primal sub problem

given any feasible MPS, y, the dual of the sub problem is always bounded. Hence, the BD steps for MVC

optimization can be modified as

Step 1. Initialize ŷ subject to (1c). Set the lower bound as LB := −∞, the upper bound as UB := +∞,

and the gap limit ε to a positive value.

Step 2. WHILE UB − LB > ε DO

Solve the dual of the sub problem, (4), and get the extreme point, û.

Add cut

π ≤ c′y + [b−By]′û. (5)

LB := max{LB, c′ŷ + [b−Bŷ]′û}.

Solve the master problem as

π̂ := max
y,π

π 3 cuts,y ∈ Y. (6)

UB := π̂.

END While.

Given the example MVC model (2), [b−By]′û can be obtained as

[b−By]′û =

S∑
s=1

T∑
t=1

J∑
j=1

I∑
i=1

ûjtsqijyit.

Thus, in each iteration, the newly added cut, (5), can be obtained as

π ≤
T∑
t=1

J∑
j=1

I∑
i=1

[
S∑
s=1

ûjts −
cMi

[1 + γ]t

]
qijyit. (7)

Let ûkjts be the solution of the dual of the sub problem in the kth iteration. Then, the master problem, (6),

for our example MVC model has the form of

Maximize π,

s.t. π ≤
T∑
t=1

J∑
j=1

I∑
i=1

[
S∑
s=1

ûkjts −
1

[1 + γ]t
cMi

]
qijyit, ∀k,

(2c)-(2g).

After the decomposition, we can iteratively solve the master problem and the subproblem using different

solvers. As the subproblem can be solved using common LP solvers such as CPLEX, we focus on the

heuristics for the master problem herein.

3.2. Generating dynamic bench-pushbacks

From the form of the master problem, we observe that I × T binary variables are included, which is still

too many to solve. Our approach is to reduce the number of binary variables by aggregating blocks to bigger
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scheduling units. Aggregation has been used widely in MPS optimization (e.g., Ramazan, 2007; Newman &

Kuchta, 2007; Weintraub et al., 2008; Boland et al., 2009; Tabesh & Askari-Nasab, 2011; Jélvez et al., 2016,

etc.).

We use a dynamic bench-pushback aggregation strategy that is generated based on the economic value

of each block. The bench-pushback aggregation based on static block values is summarized in Chicoisne

et al. (2012) in which the bench-pushbacks are referred as bench-phases. First, a series of nested pits are

generated by gradually reducing the values of all blocks and generates a sequence of reducing ultimate pit

limits. The pushbacks (or phases) are formed based on the obtained nested pits. Each pushback is then

divided into bench-pushbacks based on the vertical levels (or ‘benches’). Finally, a new mathematical model

is formulated to optimize the extraction schedule of bench-pushbacks rather than blocks. The predecessors of

a bench-pushback include the bench-pushbacks with an equal or higher vertical level and within the same or

smaller nested pits. Figure 1 shows the definition of nested pits, pushbacks, benchphases and an example of

precedence constraints. The area between any two neighboring pit shells is a pushback, and the area with the

same letter is a bench-pushback. As an example, the predecessors of bench-pushback ‘g’ are bench-pushbacks

‘a’, ‘b’, ‘c’, ‘d’ and ‘f’. However, in our mathematical formation, only the direct predecessors, ‘d’ and ‘f’, are

specified in the precedence constraints. After bench-pushback aggregation, the number of binary variables

is reduced and each aggregated scheduling unit has no more than two precedence constraints.

[Figure 1 about here.]

From (7), we observe that
∑J
j=1

[
[1 + γ]t

∑S
s=1 ûjts − cMi

]
qij actually indicates the value created by

block i if it is mined in period t, denoted by vit(û). When t is unknown, the expected value created by block

i, denoted by vi(û), can be obtained as

vi(û) =
1

T

T∑
t=1

vit(û).

Because vi is a function of û, in our dynamic bench-pushback aggregation method, the bench-pushbacks are

regenerated in each Benders iteration when û is updated.

When the values of the blocks are available, the nested-pits can be generated by gradually reducing the

block values. Suppose that N nested-pits are generated. A sequence of scalar factors, λ1 > λ2 > · · · > λN ,

are introduced to reduce the block values. Let bni be the binary variable that indicates if block i belongs to

pit n. Then, pit n can be generated by solving the binary program

Maximize

I∑
i=1

vi(û)− λnp
J∑
j=1

gjqij

 bni , (8a)

s.t. bnε ≥ bni , ∀ε ∈ Pi, (8b)

bni ∈ {0, 1}, ∀i. (8c)
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In (8a), vi(û) − λnp
∑J
j=1 gjqij computes the value of block i that is used to generate pit n. (8b) is the

precedence constraint.

In order to control the size of pushbacks, we set a size limit for each pushback. If the size of a pushback

is lower than the size limit, the pushback is merged with the next pushback. The merge continues until

the size of the size of obtained pushback reaches the size limit. When all the pushbacks are generated, the

bench-pushbacks are generated as described earlier.

Note that because the bench-pushback generation is a heuristic method, the upper bound obtained by

solving the reduced master problem might be less than the true upper bound (UB) obtained by solving the

original master problem that is at block-level. Hence, it is possible that the obtained heuristic upper bound,

denoted by (HUB), falls below the lower bound (LB) in our Benders’ iteration. In the proposed BD method,

we do not use the classic stop criterion of BD iteration that is based on the gap between UB and LB. Instead,

we stop the iteration when LB stops increasing for a certain number of iterations.

3.3. Moving-window amelioration

When the scheduling units are aggregated from blocks to bench-pushbacks, the mining capacity in a

period may not be fully utilized because some larger scheduling units might not fit in the smaller unused

mining capacity. In order to resolve the issue, we perform a moving-window amelioration (MWA) on the

obtained bench-pushback level schedule. We use ProcFR(t0, t1) to denote the procedure of rescheduling

blocks from t0 to t1 that increase the overall NPV. ProcFR(t0, t1) includes two steps. First, a partially-

ordered knapsack (Kolliopoulos & Steiner, 2007) model is formed to find the blocks to be rescheduled from

period t0 to period t1. Let It0 denote the set of blocks that are currently scheduled in period t0, and yt1

denote the current available capacity in period t1. Then, the model can be formed as

Maximize z, (9a)

s.t. z ≤
∑
i∈It0

[
1

[1 + γ]t1
vit1(ûk)− 1

[1 + γ]t0
vit0(ûk)

]
yi, ∀k, (9b)

[t0 − t1]yi ≤ [t0 − t1]yε, ∀i ∈ It0 ,∀ε ∈ Pi ∩ It0 , (9c)

∑
i∈It0

yi ≤ yt1 , (9d)

yi ∈ {0, 1}, ∀i ∈ It0 . (9e)

In the a partially-ordered knapsack model above, the objective value z is determined by the cuts generated

in the iteration as in (9b) where ûk is the solution of DualSP in the kth iteration. (9c) is the precedence
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constraints given t0 and t1. If t0 < t1, then yi ≥ yε; otherwise, if t0 > t1, then yi ≤ yε. (9d) constrains

that the total number of blocks to be moved to period t1 should not exceed the available capacity in period

t1. Note that the available capacity in t1 should be adjusted so that the smooth constraints in (2f) are not

violated. After the partially-ordered knapsack model (9) is solved, any block i with yi = 1 in the optimal

solution is rescheduled from period t0 to t1.

The steps of MWA can be summarized as

MWA:

FOR t = 1 TO T

IF t > 1 THEN

ProcFR(t, t− 1).

END IF

IF t < T THEN

ProcFR(t, t+ 1).

END IF

Next t

4. Numerical Test

In this section, three independent hypothetical cases are designed to test our proposed MVC optimiza-

tion method. In the first case, the bench-pushback scheduling method with moving-window amelioration

(BPMWA) proposed in Sections 3.2-3.3 is tested. We compare BPMWA against a commercial software in its

capability of solving the upstream MPS when the economic value of each block is given. In the second case,

the performance of the proposed BD-based simultaneous MVC optimization method (BDSimO) is tested by

comparing it with a sequential MVC optimization method. In the last case, the importance of integrating

market uncertainty is tested and a managerial insight is extracted from the results. Our proposed method

is programmed using Matlab R2015b and CPLEX 12.51, and tested on a platform of Intel Xeon X5650 with

two 2.67GHz processors and 24.0GB RAM.

4.1. The performance of BPMWA

Because BPMWA runs in each iteration to solve the master problem, if it does not generate a MPS

with a good quality, the error will accumulate over iterations. Thus, we first design a hypothetical case by

which the proposed BPMWA is compared with GEOVIA Whittle 4D, a commercial software that is widely

used in mining industry. Because Whittle 4D is not capable of solving a MPS optimization problem with

Benders cuts, it is not possible to compare BPMWA and Whittle 4D in each iteration. Hence, the comparison
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is based on a common MPS optimization problem without Benders cuts as

Maximize

I∑
i=1

1

[1 + γ]t
viyit, (10)

Subject to (2c)-(2g).

The block value, vi, in (10) is static as vi = max
{∑J

j=1

[
p0gj − cP

]
qij , 0

}
− cMi qij , which indicates that

block i is only sent for processing when the gain obtained from the product is higher than processing cost.

We use the BPMWA and Whittle 4D to optimize the MPS of a copper deposit that includes 40,044

blocks and 17 predecessors are considered for each block. 20 geological simulations of the orebody models

are available as in Figure 2, where the yellow color indicates the amount of copper contained in the block.

The 3D-view model shows the average grade of each block and the top-view models with contour lines show

the grade of each block in different simulations. We conduct 20 comparisons, each of which is based on a

particular simulated orebody scenario. A single valuable element is considered in the test and 15 bins are

set on the distributed material grade to categorize the materials into J = 15 types. For any type j material,

the grade is set to gj = 0.001 + 0.02 × [j − 1]. Block i belongs to type j, i.e., qij equals to the tonnage

of the block, if its grade falls in [gj − 0.001, gj + 0.001). If a block has a grade more than 3%, it belongs

to type J . The cost of mining a block is ranged as cMi ∈ [2, 2.5] ($ per tonne). The mining capacity, the

unit processing cost and the discount rate are set to y = 6500 (blocks per year), cP = 15 ($ per tonne) and

γ = 0.1, respectively. In the current hypothetical case, we ignore the market uncertainty and set a constant

commodity price as pt = 3, 000 ($ per tonne) for all t.

[Figure 2 about here.]

We set Whittle 4D to generate MPS according to its default ‘best-case scheduling strategy’. In this

scheduling strategy, a sequence of nested pits are generated by dynmically reducing the value of each mining

block. The inner pits are mined earlier and each pit is mined from top to bottom. The number of nested pits

generated determines the quality of schdule. For comparison, we set the number of pits to 100, which is the

maximum number allowed by Whittle 4D. For BPMWA, the size limit of pushbacks is set to 1500 blocks and

the bench height is set to 5 times block height. Figure 3 shows the NPVs of the mine production schedules

generated by the two methods for 20 simulations. It can be observed that BPMWA generates better schedules

and creates a 1.11% higher NPV on average. Note that our method uses more computation time because

Wittle 4D generates nested-pits using a customized Lerch-Grossman algorithm, which is not employed in our

work. Since the MPS optimization problem is a strategic optimization problem, the difference of computation

time can be ignored.

[Figure 3 about here.]
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Figure 3 also shows that, before applying MWA, the best-case scheduling strategy of Whittle 4D generates

better results than the bench-pushback methods. However, we cannot employ the same method because, in

the best-case scheduling strategy of Whittle 4D, the mining rate is always maximized by fully utilizing the

mining capacity, which is not the optimal strategy when the block values fluctuate in different periods.

The comparison results presented herein shows that BPMWA is on a par with the commercialized

software in its search ability. Because, when the Benders cuts are added, the MPS optimization problem is

only tightened by considering multiple scenarios of block values, the quality of MPS obtained by BPMWA

will not be impacted except that the computation time will be increased.

4.2. The performance of BDSimO

The BDSimO is tested in a hypothetical case in which a new MVC is to be constructed to maximize

the NPV of a newly found copper deposit as described in Section 4.1. The BDSimO is compared with a

sequential optimization strategy (SeqO). In SeqO, the long-term MPS is optimized without considering the

downstream MFPP and the downstream MFPP is designed after the upstream MPS is fixed. Given that the

test is based on the same copper deposit used in Section 4.1, the same model, (10), is formed to generate

the MPS for SeqO. Because the test focuses on the ability to coordinate the optimizations of the upstream

MPS and the downstream MFPP, the geological uncertainty is ignored and the grade of each block is set to

the average of 20 simulations.

Besides the parameters that have been assigned in Section 4.1, the parameters for the hypothetical

case are set as follows. The investment required for building a unit processing capacity is τ = 50 ($ per

tonne). The lower bound and the upper bound of the material grade required for processing are g = 0.002

and g = 0.03, respectively. For the stockpiles, the holding cost and the rehandling cost are cH = 0.2 ($ per

tonne year) and cR = 1 ($ per tonne), respectively.

In order to implement BDSimO, we use the MPS in SeqO as the initial solution for the master problem

in the proposed BD method. In order to test the superiority of dynamic bench-pushbacks, we compare the

dynamic method, namely BDSimO(D), and the static method, namely BDSimO(S). In BDSimO(S), the

bench-pushbacks are not updated in each iteration of BD. The performances of BDSimO(D) and BDSimO(S)

are compared in Table 2. We observe that, in the test, both BDSimO(S) and BDSimO(D) use 4 iterations

and require less than an hour to converge. As the LB indicates the objective value, we find that BDSimO(D)

generates a MVC plan with a 5.11% higher NPV, which is more than $69 million. The test results show the

superiority of the dynamic bench-pushback generation and the efficiency of the BDSimO.

[Table 2 about here.]

In order to show the ability of BDSimO(D) in simultaneous optimization, the MVC plans obtained from
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SeqO and BDSim(D) are compared. Figure 4 compares the materials extracted from the MPSs generated

by SeqO and BDSim(D), respectively. We observe that, in SeqO, the upstream mining rate is maximized

without considering the downstream congestion. In BDSimO(D), the upstream MPS and the downstream

MFPP are coordinated, whereby the upstream mining rate is reduced to account for the processing capacity

downstream. Figures 5 and 12 compare the downstream MFPPs under BDSimO(D) and SeqO. We find

that the stockpile level in each year is significantly reduced after BDSimO(D) is employed, which provides

evidence for the coordination of MVC. The investment in processing capacity in Figure 12 is reduced from

1.85 × 107 to 1.51 × 107, while the capacity utilization is increased in the later peiords, i.e., Years 15-20.

Consequently, as shown in Figure 7, the MVC plan generated by BDSimO(D) creates a 65.42% higher NPV

over the planning horizon, which is approximately $563 million .

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

4.3. The importance of integrating market uncertainty

We simulate 50 market scenarios where the copper price ($ per tonne) fluctuates as shown in Figure

8. The prices are adjusted to ensure that the average of simulated prices in each period equals to 3,000 ($

per tonne) so that the change in the optimal MVC plan is not caused by the prediction of a better or worse

market for copper.

[Figure 8 about here.]

After implementing BDSimO(D), the stochastic MVC plan (SMVCP) that considers market uncer-

tainty is compared with the deterministic MVC plan (DMVCP) obtained in Section 4.2. Table 3 shows the

iteration process of BDSimO(D) when market uncertainty is considered. Compared with Table 2, we observe

that the number of iterations and the computation time required is random and does not differ based on

whether the market uncertainty is considered.

[Table 3 about here.]

Figure 9 compares the cashflows and the cumulative NPVs of DMVCP and SMVCP, respectively. The

test result shows that, when the market uncertainty is considered, the optimizer estimates a 2.36% higher
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expected NPV, which is about $33.6 million. This difference is caused by the underestimated value of the low

grade material in the deterministic optimization when the commodity price is decreased significantly. The

example in Figure 10 shows how the low-grade material is underestimated in the deterministic optimization.

In the example, the horizontal axis shows the value created by extracting certain low-grade material and

converting it to a commodity. In the deterministic optimization, when the material value computed from the

expected commodity price is negative, the optimizer will treat the material as waste. However, because the

material can be disposed of when the commodity price drops below the processing costs to prevent further

loss, it actually creates a positive expected value. Hence, in Figure 10, the material is treated as waste

when using deterministic commodity price and is treated as ore when market uncertainty is considered. As

discussed earlier, since the computation time is not a concern, it is well worth integrating market uncertainty

in long-term MVC planning to find a more reliable estimation.

[Figure 9 about here.]

[Figure 10 about here.]

Figures 11 shows the materials mined at each period in SMVCP. By comparing the materials mined

in SMVCP and DMVCP, we can see that more low-grade materials are mined in SMVCP. Consequently,

29,232 blocks are mined in DMVCP and 30,094 blocks are mined in SMVCP, which means that SMVCP

estimates a 2.95% larger pit at the end of planning horizon. Because the difference is mainly caused by the

low-grade blocks, the difference in the expected NPV is less than the difference in pit sizes. The comparison

between Figures 11 and 4b also shows that, when market uncertainty is considered, the mining rate after the

second year is significantly increased and the life of mine is reduced. This change of optimal mine production

schedule is for the purpose of increasing the stockpile level to increase the flexibility of the MVC to deal

with market uncertainty.

[Figure 11 about here.]

The average downstream processing and stockpiling amounts expected when market uncertainty is

considered is shown in Figure 12a and 12b. By comparing Figures 12a and 12b with Figures 6b and 5b,

respectively, we can observe that, when market uncertainty is considered, the optimal processing capacity,

which is invested at the beginning of the planning horizon, is increased and the average stockpile levels in

the later periods are increased. These changes also serve to increase the flexibility of the MVC so that the

mining company can adjust its commodity production with more freedom to deal with market uncertainty.

[Figure 12 about here.]
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5. Conclusions

In the present work, a Bender-decomposition based mineral value chain optimization method is devel-

oped to simultaneously optimize the upstream MPS and the downstream MFPP. Based on the dual solution

solved in each iteration of the proposed BD method, the blocks are aggregated to reduce the complexity of

solving the upstream MPS. A moving-window amelioration method is also developed to fix the schedule gen-

erated based on the aggregated scheduling units, i.e., bench-pushbacks. By observing the results of a series

of numerical tests based on the practical-scale hypothetical cases, three conclusions can be drawn. First,

the proposed aggregation and amelioration methods can generate good-quality mine production schedules

with reasonable computation times, and the dynamic method outperforms the static method. Second, the

proposed Benders-decomposition based method can effectively synchronize the optimizations upstream and

downstream in a mineral value chain. Finally, as a management insight, ignoring market uncertainty can

result in the underestimation of profitability and a suboptimal mineral value chain plan. In order to adapt

to market uncertainty, the stochastic optimizer suggest a higher investment in the capacity of the processing

plant and a long-term mine production schedule with a higher production rate and a shorter life of mine.

The suggested mine production schedule incurs a relatively higher stockpile levels but it enables a greater

flexibility in changing the commodity production to accommodate market fluctuations.
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Figure 1: Bench-pushbacks of an open-pit mine.

(a) 3D view

Scenario 2

Scenario 1

Scenario 20

...

(b) Top view

Figure 2: The 3D view of the orebody with average grade and the top view of the orebodies with random grades.
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Figure 3: Comparing Whittle 4D and BPMWA.
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Figure 4: The raw materials extracted from the MPSs generated by both methods.
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Figure 5: The optimal stockpile levels incurred by the MPSs generated by both methods.
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Figure 6: The optimal processing rates based on the MPSs generated by both methods.

 

  Figure 7: The cashflows and the cumulative NPVs of the MVC plans generated by SeqO and BDSimO(D).
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Figure 8: 50 simulations of copper price fluctuation over 20 years.
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Figure 9: The cashflows and the cumulative NPVs of DMVCP and SMVCP.
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LB Figure 10: How value of the low-grade material is underestimated in deterministic optimization.

 

  Figure 11: The materials mined in SMVCP.
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(a) Processing amounts Rand.AvgeStock (b) Stockpiling amounts

Figure 12: The average downstream stockpiling and processing amounts expected in each year when the market uncertainty is
considered.
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Symbol Description*
General

T ∈ Z+ The planning horizon.
S ∈ Z+ The number of orebody scenarios representing the geological uncertainty.
I ∈ Z+ The number of blocks considered for scheduling.
J ∈ Z+ The number of material types.

Indices
t ∈ {1, . . . , T} The index of a planning period.
s ∈ {1, . . . , S} The index of a scenario in the stochastic model.
i ∈ {1, . . . , I} The index of a block.

Parameters
γ ∈ R+ The discount rate used for computing NPV.
qij ∈ R+ The parameter indicating the amount (in tonnes) of type j material in block

i.
cMi ∈ R+ The cost of mining a ton of block i. The mining cost varies between blocks be-

cause it is determined by a block’s characteristics such as hardness, locations,
and so on.

pts ∈ R+ The price of a ton of commodity in period t.
gj ∈ (0, 1) The expected grade, i.e., the percentage of the valuable element contained, of

type j material. In our example MVC model, only a single valuable element
is considered.

cH ∈ R+ The holding cost (per ton) for keeping the material in stockpiles.
cR ∈ R+ The cost (per ton) for rehandling the material sent from stockpiles to the

processing plant.
y ∈ R+ Mining capacity, i.e., the maximum number of blocks that can be extracted

in a period.
ξ ∈ R+ The smoothing parameter that constrains the fluctuation of the production

rate at each planning period.
Pi ⊂ {1, . . . , I} The set of the direct predecessors of block i.

Variables
yit ∈ {0, 1} Binary variable which equals to 1 if and only if block i is mined in period t.
xMP
jts ∈ R+ The amount of type j material sent from mine to processing plant in period

t.
xMH
jts ∈ R+ The amount of type j material sent from mine to stockpiles in period t.

xHP
jts ∈ R+ The amount of type j material sent from stockpiles to processing plant in

period t.
xHjts ∈ R+ The stockpile level of type j material in period t.

xP ∈ R+ The processing capacity of processing plant in a single period.
*The descriptions for subscript s, representing scenario-dependant, are omitted.

Table 1: List of notation
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Iteration 
number 

Time used  
(s) 

LB  
(Billion $) 

HUB 
(Billion $) 

Gap  
([HUB-LB]/LB) 

BDSimO(S) 1 296 $0.8599B $4.1837B 386.56% 
 2 702 $1.3532B $1.4645B 8.36% 
 3 1168 $1.3533B $1.3533B 0.04% 
 4 1352 $1.3533B $1.3533B 0.00% 
 5 1536 $1.3533B $1.3533B 0.00% 
 6 1717 $1.3533B $1.3533B 0.00% 
      

BDSimO(D) 1 294 $0.8599B $4.1837B 386.56% 
 2 889 $1.3138B $1.4653B 11.53% 
 3 1281 $1.4042B $1.4123B 0.58% 
 4 1869 $1.4042B $1.3811B -1.64% 
 5 2250 $1.4224B $1.4278B 0.38% 
 6 2684 $1.4224B $1.3462B -5.36% 
 7 3158 $1.4224B $1.4029B -1.37% 
 8 3642 $1.4224B $1.4084B -0.99% 

 

Commodity 
Price 

Cost  

PDF of 
price 

Loss estimated 
by DMVCP 

Gain estimated 
by SMVCP 

1 

0 

Expected 
price 

LB 

Table 2: Comparing BDSimO(S) and BDSimO(D).

Iteration 
number 

Time used  
(s) 

LB  
(Billion $) 

HUB 
(Billion $) 

Gap  
([HUB-LB]/LB) 

1 304.8916 $0.9306B $4.1837B 349.58% 
2 774.96 $1.4082B $1.5322B 8.80% 
3 1143.693 $1.4560B $1.4619B 0.41% 
4 1529.466 $1.4560B $1.4472B -0.60% 
5 1966.712 $1.4560B $1.3782B -5.34% 
6 2520.673 $1.4560B $1.4066B -3.39% 

  
Table 3: The iteration process of BDSimO(D) when the market uncertainty is considered.
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