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Abstract 

Production scheduling faces three challenges, which are inconsistent key performance indicators (KPIs), processing time uncertainties, and 

production schemes. Applying modern portfolio theory (MPT), Li et al. (2021) proposed a ToB(α) heuristic to balance trade-offs in one-stage 

production.  However, production schemes for optimizing average performance of individual KPIs, trade-off values, or worst-case scenarios 

affect the stability of a process differently, especially with processing time uncertainties.  We propose an innovative approach using transfer 

functions for stability (TF4S) in balancing trade-offs in production scheduling.  Our TF4S approach provides a systematic way to analyze the 

stability of one-stage production and can be extended to production scheduling for classic m-machine flow lines. 
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1. Introduction 

Production scheduling involves the allocation of competing 

tasks to scarce resources over time in achieving some objectives 

[1].  Given limited resources, it is difficult to achieve the 

optimum across each of individual objectives, especially when 

objectives are inconsistent with each other.  Inconsistent key 

performance indicators (KPIs) exist in both N-job one-stage 

production and classical N-job m-machine flowshop 

production.  Consequently, multi-objective optimization is a 

challenge for production scheduling.  

Stochastic processing times are ubiquitous in many 

processes for different systems, such as in production lines for 

manufacturing, in perioperative processes for operating room 

scheduling, and in supply chains.  Given diversified system 

settings, it is impossible at current time t to know the exact 

value of a stochastic processing time for time t+1 [2].  Although 

we can describe stochastic processing times by different 

distributions, outliers always exist.  In addition, measurement 

errors may fail our prediction.  Therefore, processing time 

uncertainty is another challenge for production scheduling.  

Many optimization problems in production scheduling are 

NP-complete or NP-hard in strong sense, such as minimizing 

maximum completion time or makespan for a classic flow line 

with more than 2 machines [3], minimizing total completion 

time for two-stage processes [4], and minimizing variance in 

processing times in one-stage production [5].  For NP problems, 

it is difficult to balance trade-offs between two inconsistent 

KPIs.  For example, in operating room (OR) scheduling, 

speeding up the patient flow (or reducing patient flow time) 

going through ORs might cause idle time in ORs and reduce 

OR utilization.  Consequently, maximizing OR utilization and 

minimizing patient flow time are inconsistent with each other.  

Moreover, maximizing OR utilization and minimizing patient 

flow time are NP-complete problems, without polynomials for 

optimization.  Consequently, it is difficult to quantify how 

much patient flow time we should sacrifice to improve OR 

utilization, and vice versa.  Similarly, in manufacturing, 

reducing work-in-process (WIP) inventory is inconsistent with 

maximizing utilization of production lines, each of which is 

also an NP problem.  Given such properties of NP-

completeness or NP-hardness for some KPIs, optimizing the 
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worst-case scenario is a common scheme in production 

scheduling to hedge against processing time uncertainties.  

However, Li et al. empirically showed that optimizing the 

worst-case scenarios does not necessarily optimize the expected 

value of KPIs [6].  What scheduling scheme should be adopted 

for production is the third challenge for production scheduling.  

Given the above three challenges to production scheduling, 

which are inconsistent KPIs, processing time uncertainties, and 

production schemes, we propose an approach of transfer 

functions for stability (TF4S) in balancing trade-offs for one-

stage production.  Our TF4S provides a systematic way to 

analyze one-stage production performance, and it can be 

extended to production scheduling for classic flow lines.   

The rest of this paper is organized as follows.  A brief 

literature review is provided in Section 2, the programming 

logic of our TF4S approach is illustrated in Section 3, results of 

empirical case studies are analyzed in Section 4, and conclusion 

and future work are detailed in Section 5. 

2. Literature review 

Inconsistent KPIs in production are provided in subsection 

2.1, especially for one-stage production, common scheduling 

schemes are summarized in subsection 2.2, a few existing 

scheduling methods for production with stochastic processing 

times are discussed in subsection 2.3 especially for trade-off 

balancing, and the concepts of transfer function and process 

stability are summarized in subsection 2.4. 

2.1. Inconsistent KPIs in production 

Given N jobs for one-stage production, we denote pj for 

processing times of job j = 1,…,N.  Total completion time (TCT) 

is a fundamental KPI in production scheduling.  For instances 

with deterministic processing times, 

𝑇𝐶𝑇 = ∑ (𝑁 − 𝑗 + 1) ∙ 𝑝𝑗
𝑁
𝑗=1 , (1) 

is a weighted sum of processing times, and weights (N – j + 1) 

are not dependent on processing times, but on the order of jobs 

in a sequence.  Consequently, if we use the shortest processing 

time (SPT) rule to sort processing times into a non-decreasing 

order, then we have an optimal solution to min(TCT) for 

deterministic instances.  As mean flow time equal to TCT/N is 

the average completion time, min(TCT) drives other KPIs, such 

as the average of WIP inventories in production and the mean 

waiting time in perioperative processes.  

Although minimizing TCT can be modelled as a polynomial 

of Eq. (1) for deterministic instances, minimizing the variance 

in completion times (VCT) is NP-hard in general [5].  To 

min(VCT), Schrage (1975) found that the job with the longest 

processing time (LPT) should be sequenced first [7].  The SPT 

and LPT rules sequence processing times into different shapes, 

which shows the inconsistency between min(TCT) and 

min(VCT) empirically.  Moreover, Eilon and Chowdhury (1977) 

found that the optimal sequence to min(VCT) must be V-shaped 

[5], i.e., the jobs must be arranged in a descending order of 

processing times if they are scheduled before the job with the 

shortest processing time, but in an ascending order of 

processing times if scheduled after it, which is the combination 

of LPT and SPT rules.  Kanet (1981) found an alternative way 

to min(VCT), which is equivalent to measuring the total 

absolute differences in completion times (TADC) [8], 

𝑇𝐴𝐷𝐶 = ∑ (𝑗 − 1)(𝑁 − 𝑗 + 1) ∙ 𝑝𝑗
𝑁
𝑗=1 . (2) 

Equations (2,3) illustrate the trade-offs between minimizations 

of TCT and VCT, where (N – j + 1) is a linear function of j, but 

(j – 1)(N – j + 1) is a quadratic function.  

For N-job M-machine flowshop production, we denote pj,i 

for processing time of job j on machine i = 1,…,M.  Minimizing 

maximum completion time (MCT), Cmax = CN,M or makespan, 

is a common KPI in production scheduling, driving many other 

performance measures, such as machine utilization, production 

cost, etc.  Li et al. (2014) proved the inconsistency between 

min(MCT) and min(TCT) [9].  Using a 2-machine flow line, Li 

et al. showed that one condition of pj,2 – pj+1,2 ≤ 0 is good for 

min(TCT), but another condition of pj+1,2 – pj,2 ≤ 0 is good for 

min(MCT). 

Current research on flow shop scheduling (2005-present) 

has extended to sustainability in terms of energy-efficiency, 

water usage, CO2 emission [10][11][12][13], which intensifies 

the need for balancing trade-offs among inconsistent KPIs. 

2.2. Common scheduling schemes against uncertainties 

One of the difficulties in handling stochastic processing 

times is that the actual value of a processing time is not 

available in advance, but known only after the operation is 

finished [2].  Consequently, simulation is the general offline 

approach to investigate stochastic problems.  The coefficient of 

variation, CV = σ / µ, is commonly used to describe variation 

levels in processing times, where σ is the standard deviation of 

a random variable, and µ is the mean.   

In general, as CV increases, the process performance for 

production gets worse.  Conway et al. (1988) investigated the 

effect of WIP inventories in flowshop production [14].  

Through simulation, they concluded that the larger the CV, the 

lower the capacity of a production line, and WIP inventories 

were important to recover the capacity. 

Adaptive control is a dynamic approach for stochastic 

problems, which means re-sequencing jobs online as soon as 

actual processing times are available.  However, because of 

high demand on computation speed for online re-sequencing, 

Lawrence and Sewell (1997) recommended simple priority 

dispatching rules (PDRs) over sophisticated heuristics for 

adaptive control with variation in processing times [15].  Cao, 

Patterson, and Bai (2005) and Mahmoodi, Mosier, and Guerin 

(1996) recommended the SPT rule to minimize the mean flow 

time and WIP inventory levels for deterministic instances 

[16][17].  Conway et al. (1967) recommended the shortest 

expected processing time (SEPT) to min(TCT) for stochastic 

instances [18]. 

Optimizing worst-case scenarios is a common scheme in 

simulation for offline scheduling.  Maximizing minimum 

deviations from the upper bound of a KPI is the same as 

minimizing maximum deviation from the lower bound.  

Daniels and Kouvelis (1995) proposed the endpoint product 

(EP) and endpoint sum (ES) heuristics to hedge against 

processing time uncertainties in one-stage production [19].  

These two heuristics are designed to maximize minimum 

deviations from the upper bound of TCT, i.e., generating robust 
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schedules for the worst-case scenarios accordingly.  Similarly, 

Rahmani and Heydari (2014) proposed a regret model to 

optimize the worst-case scenarios of min(MCT) in M-machine 

flowshop production [20]. 

2.3. Some scheduling methods for stochastic processing times 

Modern portfolio theory (MPT) proposed by Markowitz 

(1952) was originally used to balance trade-offs between the 

expected returns and the risks involved in investment [21].  

Applying the MPT model to production scheduling, Li et al. 

(2021) linked a factor α with VCT, and proposed a trade-off 

balancing heuristic, ToB(α), to balance trade-offs between 

min(TCT) and min(VCT) in one-stage production [6].  Through 

case studies with the CV changing from 0.0 to 0.5 for uniform 

distributions, the ToB(α) heuristic outperformed the EP and ES 

heuristics in terms of the expected values of TCT, and it 

achieved smaller maximum deviations from the lower bound at 

CV = 0.5, which means being more robust when processing 

time uncertainty is high.   

Li and Freiheit (2016) proposed a ‘state space-average 

processing time’ (SS-APT) heuristic to min(MCT) for N-job M-

machine flow shop production with stochastic processing times 

[2].  The SS-APT heuristic is used to re-sequence jobs online 

for adaptive control.  Through case studies, Li and Freiheit 

concluded that their heuristic performed better than simple 

PDRs on adaptive control, especially for WIP inventories. 

2.4. Transfer function and stability 

We have one concern about existing scheduling methods, 

which is how they perform for stochastic processing times in 

distributions other than uniform or truncated normal 

distributions, or for a real situation where processing time 

uncertainty is higher than that in simulation.   

A transfer function of a system or a process is a 

mathematical function that theoretically models the output for 

each possible input [22].  A transfer function can be expressed 

either in the time domain or in the frequency domain.  Define 

the output Y as related to the input X by a transfer function H, 

in terms of Y(s) = H(s) X(s), where s = jω is a variable in 

frequency domain.  H(s) = Y(s) / X(s) = N(s) / D(s) is the 

transfer function, where N(s) is a polynomial for the numerator 

and D(s) for the denominator.  The solutions to the 

characteristic function of D(s) = 0 are called the poles (λ).  If 

the real parts of the poles are on the left half plane of the 

complex plane, i.e., Re(λ) < 0, then the system is stable.   

Bode plots are generally used to assess the stability of a 

negative feedback loop, in which the gain margin (Gm) and 

phase margin (Pm) are required to maintain stability under 

variations caused by uncertainties or disturbances involved in 

a process.  Specifically, the gain margin is the change in open-

loop gain, expressed in decibels (dB), required at 180° of phase 

shift to make the closed-loop system unstable, and the phase 

margin is the change in open-loop phase shift required at unity 

gain to make the closed-loop system unstable [22].  The gain 

margin is found by using the phase plot to find the frequency, 

ωGm, where the phase angle is 180°.  On the magnitude plot at 

this frequency, the gain margin, Gm, is the gain required to 

raise the magnitude curve to 0 dB.  The phase margin is found 

by using the magnitude curve to find the frequency, ωPm, where 

the gain is 0 dB.  On the phase plot at this frequency, the phase 

margin, Pm, is the difference between the phase value and 

180°.   

In general, the larger the gain and phase margins, the higher 

is the stability of a process to hedge against external 

disturbances or internal uncertainties. 

3. Transfer function for stability in trade-off balancing 

Given processing time uncertainties, in terms of different 

distributions with different magnitudes and frequencies, a 

transfer function is helpful for us to investigate the properties 

of a process through scheduling.  Currently, major literature on 

production scheduling is either to seek near-optimal solutions 

to NP problems by using heuristics, or to improve the 

computation speed or reduce computational complexities of 

sequencing methods by better searching the solution space.  We 

have not seen any publication that addresses the stability of 

production using transfer functions, especially from the 

perspective of control theory.  In contrast, research on transfer 

functions for stability in control theory is mainly based on 

polynomial problems.   

Assigning a factor of α to Eq. (2) as the preference on 

min(VCT) and another factor of (1 – α) to Eq. (1) as the 

preference on min(TCT), Li et al. (2021) used the following 

equation to sequence jobs in the ToB(α) heuristic for trade-off 

balancing in one-stage production [6]: 

𝑧 = ∑ [(𝑗 − 2)𝛼 + 1](𝑁 − 𝑗 + 1)𝑁
𝑗=1 ∙ 𝑝𝑗. (3) 

As both TCT and VCT are driven by completion times, we 

can regard a vector of N completion times as output Y from one-

stage production, which is related to weights W and processing 

times P as input X associated with job j = 1,…,N.  Defining 

input as X = [P, W], we have the relationship of Y(j) = H(j)X(j).  

To estimate transfer function H(j), we apply an autoregressive 

and moving average, ARMA(a,b) model, in time series analysis 

to estimate H(j).  Specifically, an ARMA(a,b) process is defined 

as follows [23]:  

𝑌𝑗 = 𝑐 + 𝜙1𝑌𝑗−1 + 𝜙2𝑌𝑗−2 +⋯+ 𝜙𝑎𝑌𝑗−𝑎 +  

𝜀𝑗 + 𝜃1𝜀𝑗−1 + 𝜃2𝜀𝑗−2 +⋯+ 𝜃𝑏𝜀𝑗−𝑏, (4) 

where c is a constant, e.g., average completion time, εj can be 

difference between Xj and its mean, i.e., the error term, 𝜙s and 

θs are coefficients for output series Y and error series ε, and a 

and b are two integer constants for lags in Y and ε, respectively.  

Define a lag operator L such that LXj = Xj–1 and L(LXj) = L2Xj = 

Xj–2.  Using the lag operator, we can rearrange terms in Eq.(4) 

and have  

(1 − 𝜙1𝐿 − 𝜙2𝐿
2 −⋯− 𝜙𝑎𝐿

𝑎)𝑌𝑗  

= 𝑐 + (1 + 𝜃1𝐿 + 𝜃2𝐿
2 +⋯+ 𝜃𝑏𝐿

𝑏)𝜀𝑗. (5) 

Provided that the roots for 1 − 𝜙1𝑧 − 𝜙2𝑧
2 −⋯−𝜙𝑎𝑧

𝑎 = 0 

lie outside the unit circle, where z is a real number for the 

polynomial of ϕ (z), we can divide both sides of Eq.(5) by 

(1 − 𝜙1𝐿 − 𝜙2𝐿
2 −⋯− 𝜙𝑎𝐿

𝑎)  and obtain Yj = µ + H(L)εj, 

where 𝜇 = 𝑐 (1 − 𝜙1 − 𝜙2 −⋯− 𝜙𝑎)⁄ , and  

𝐻(𝐿) =
(1+𝜃1𝐿+𝜃2𝐿

2+⋯+𝜃𝑏𝐿
𝑏)

(1−𝜙1𝐿−𝜙2𝐿
2−⋯−𝜙𝑎𝐿

𝑎)
. (6) 
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Consequently, 𝐻(𝐿) is in the form of a transfer function that 

relates output (Yj – µ) with input εj, and stationarity of the 

ARMA process depends entirely on the autoregressive 

parameters (ϕ1, ϕ2,…, ϕa), the same as the poles of H(s) for the 

stability of a system.  Moreover, sequencing jobs for 

production scheduling can be specifically based on the AR(a) 

series for differences of output Y and on the MA(b) series for 

differences of input X, which can be regarded as polynomials 

describing the relationship between input and output.  

Provided a transfer function H of a stage, it is flexible and 

easy to link multiple stages in series to form a flow line, or to 

add a feedback loop to a stage for adaptive control.  For 

example, linking two stages H1 and H2 in series, we can 

describe the transfer function H of the two-stage flow line as 

the product of two transfer functions, i.e., H = H1 H2.  Adding 

a unity negative feedback loop to H, the new transfer function 

for the closed-loop stage is G = H / (1 + H).  Therefore, we are 

able to provide a systematic approach to analyze the production 

stability of a process by means of scheduling. 

4. Case studies 

To verify the stability of trade-off balancing in one-stage 

production, we generate an N-job one-stage dataset as follows.  

The number of jobs range from N = 500, 1000, 2000 with a 

number of 50 instances for each.  The total number of instances 

is I = 150 = 3⸱50.  The processing times for each instance 

follows a uniform distribution between [1, 999].  The stochastic 

processing times are randomly generated, using the processing 

times of an instance as the expected values E(p) and following 

a uniform distribution.  Accordingly, an observation in a 

sample is determined by 𝑝 = 𝐸(𝑝) + √3𝐸(𝑝)𝐶𝑉(2𝑈 − 1) , 

where U is a uniform random number from [0, 1].  In order to 

ensure that processing times do not fall below zero when using 

a uniform distribution, a condition of 𝐶𝑉 ≤ 1 √3⁄  should be 

maintained.  The CV changes from 0.1 to 0.5 with increments 

of 0.1 and S = 50 samples for each CV and for each instance.  

The total number of samples is 37,500 = 150⸱5⸱50.  

In total, 16 sequences are generated for each sample, with 

11 by the ToB(α) heuristics each with different α, and 1 by each 

of the EP, ES, SEPT, longest expected processing time (LEPT) 

and first come first serve (FCFS) methods, respectively.  

Among these 16 heuristics, our ToB, SEPT and LEPT 

heuristics operate on expected processing times, the EP and ES 

heuristics operate on lower and upper limits of processing 

times, and the FCFS does not depend on processing times.  

We present case study results for estimating a transfer 

function in subsection 4.1, for the stabilities of open and closed 

loops in subsection 4.2, for the gain and phase margins in 

subsection 4.3, and for 5 CVs in subsection 4.4.  In three 

subsections of 4.1, 4.2, and 4.3, the results are across preference 

factor α = 0.0, 0.1, 0.2,…, 1.0, and the results in subsection 4.4 

are across CV = 0.1, 0.2,…, 0.5. 

4.1. Transfer function estimation 

Given Eq. (3) for trade-off balancing, two factors affect the 

change rate in trade-off values and that in completion times.  

One factor is the sequence of processing times.  Different 

scheduling methods sort processing times into different 

sequences of jobs, which affect the change rate in processing 

times.  The other factor is the preference α on one KPI, which 

affects the change rate in weights.  Given N jobs for one-stage 

production, we have N data points for completion times, 

weights as shown in Eq. (3), and processing times.  We use 

70% of our data points for estimating a transfer function (TF), 

and the remaining 30% for validating the TF model.  These data 

points are based on nominal values of processing times for 150 

instances, not based on those for 37,500 randomly generated 

samples.  The probabilities that a TF model fits the validation 

data are reported in Table 1. 

In Table 1, the preferences of α are listed in column 1, 

categories of statistics for maximum, minimum and average are 

listed in column 2 for each α, and the rest of the columns is for 

the 16 heuristics.  From Table 1, we can tell that maxima of 

probabilities to fit the validation data are above 99% across all 

11 preferences α and all 16 heuristics.  Scheduling methods of 

ToB(0.0), EP, ES, and SEPT are not sensitive to the changes of 

preference α, as their averages of probabilities are above 99%.  

However, the value of preference α affects minima of 

probabilities differently with respect to heuristics.  When α = 

0.0, i.e., 100% preference on min(TCT), the LEPT’s minimum 

of probability falls to 85.14 and that for FCFS is 93.80, because 

the LEPT rule is not good to min(TCT) and the FCFS does not 

control job sequencing.  As α increases, i.e., more preference 

on min(VCT), the minima of probabilities have a decreasing 

trend in general.   

In conclusion, it is feasible to estimate transfer functions for 

a heuristic for trade-off balancing, although some methods are 

sensitive to weights. 

4.2. Stabilities of open and closed loops 

To estimate the stability of an open loop, we calculate the 

two poles of a transfer function, and the maxima of two poles 

for 16 scheduling methods are reported in Table 2.  From Table 

2, we can tell that all poles are on the left half of the complex 

plane.  Therefore, the transfer function for the open loop of the 

process is stable for all 150 instances.  

We also check the stability of the transfer function with a 

unity negative feedback loop.  The number of stable instances 

with a closed loop is reported in Table 3 across 150 instances, 

11 preferences and 16 scheduling methods.  From Table 3, we 

can tell, as the preference α increases, the number of stable 

instances increases in general, except for the LEPT rule, the 

number of stable instances for which decreases.  As α increases, 

we prefer min(VCT) more than min(TCT).  However, the 

process of production scheduled by the LEPT rule is very 

sensitive to the increase of such preferences.  

In conclusion, we can achieve the stability of production 

with an open or closed loop by using a transfer function. 

4.3. Gain and phase margins of closed-loop transfer functions 

Another measure to evaluate the stability of a process is by 

gain and phase margins of a transfer function with either an 

open or closed loop.  As adaptive control is often based on a 

closed loop, the gain and phase margins of a transfer function 
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with a unity negative feedback loop are reported in Tables 4 

and 5, respectively.  

From Table 4 for gain margins, we can tell that all transfer 

functions have some gain margins on average, although the 

minima of gain margins are all 0 as α ≥ 0.1, which explains why 

the number of stable instances is less than 150 in Table 3. 

From Table 5 for phase margins, we can tell all transfer 

functions have some phase margins on average, although the 

minima of phase margins are small across all preferences α. 

Given that gain and phase margins are used to buffer the 

magnitude and frequency of uncertainties or disturbances, 

respectively, designing the gain of a controller in a closed loop 

will change the gain and phase margins for adaptive control, 

and scheduling affects the gain of a controller.  

A Bode plot is provided in Fig. 1, which is one of 150 

instances and based on the ToB(0.0) heuristic.   

4.4. Stabilities across CVs 

As different preferences α on KPIs affect the stability of a 

process differently, shown in Tables 4 and 5, we select α = 0.5, 

i.e., an even preference on KPIs, to examine how processing 

time uncertainties affect the stability of a process.  The average 

gain and phase margins across 5 CV levels for all instances and 

samples are provided in Tables 6 and 7, respectively. 

From Table 6, we can tell that, with even preferences on 

KPIs, the grand averages of gain margins across all 5 CV levels 

are comparatively similar to the average gain margins in Table 

4 for α = 0.5, although fluctuations occur for individual 

scheduling methods in Table 6 across CV levels.  The same 

properties are observed for the grand averages of phase margins 

in Table 7 compared to the average phase margins in Table 5.   

For clarity, trend plots for gain and phase margins are 

provided in Fig. 2 and Fig. 3 respectively, not based on all 

methods, but on ToB(0.0, 0.5, 1.0), LEPT and FCFS. 

These results support our use of transfer functions to 

investigate the stability of a process with high processing time 

uncertainties.  

5. Conclusion and future work 

Balancing trade-offs in production scheduling faces three 

challenges, which are inconsistent KPIs, processing time 

uncertainties, and production schemes.  To answer these three 

challenges, we propose an innovative TF4S approach, to 

investigate the stability of a process by using transfer functions.  

Based on good scheduling results generated from the ToB(α) 

heuristics, our TF4S approach is consistent in balancing trade-

off in one-stage production and in maintaining stability across 

5 CV levels of processing time uncertainties. 

Adaptive sequencing is the next step of our research, i.e., 

dynamically schedule jobs as actual processing times unfold in 

real time. 

Table 1. Probabilities to fit validation data across preferences α for 16 scheduling methods. 

α  
ToB(α) 

EP ES SEPT LEPT FCFS 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

 Max 99.97 99.96 99.96 99.95 99.95 99.95 99.95 99.95 99.95 99.95 99.94 99.97 99.97 99.97 99.89 99.67 

0.0 Min 98.27 98.78 98.65 98.60 98.54 98.51 98.51 98.51 98.51 98.51 98.45 98.27 98.27 98.27 85.14 93.80 

 Avg 99.86 99.31 99.25 99.23 99.22 99.20 99.20 99.20 99.20 99.20 99.19 99.86 99.86 99.86 99.13 98.62 

 Max 99.99 99.61 99.48 99.44 99.39 99.34 99.34 99.34 99.34 99.34 99.31 99.99 99.99 99.99 99.86 99.63 

0.1 Min 96.40 61.32 60.78 60.76 60.69 60.65 60.65 60.65 60.65 60.65 60.59 96.40 96.40 96.40 68.90 73.86 
 Avg 99.84 86.00 82.86 82.18 81.59 80.98 80.98 80.98 80.98 80.98 80.10 99.84 99.84 99.84 92.02 97.67 
 Max 99.99 99.25 99.12 98.84 98.40 97.82 97.82 97.82 97.82 97.82 94.33 99.99 99.99 99.99 99.70 99.44 

0.2 Min 98.98 0.68 2.70 2.76 2.84 0.55 0.55 0.55 0.55 0.55 1.50 98.98 98.98 98.98 78.59 68.35 
 Avg 99.88 64.60 68.32 67.40 66.71 66.20 66.20 66.20 66.20 66.20 67.71 99.88 99.88 99.88 91.10 97.55 
 Max 99.99 99.43 96.37 97.80 95.36 89.84 89.84 89.84 89.84 89.84 90.69 99.99 99.99 99.99 99.44 99.39 

0.3 Min 99.28 10.70 20.24 34.86 4.40 14.26 14.26 14.26 14.26 14.26 4.44 99.28 99.28 99.28 64.32 90.02 
 Avg 99.87 72.60 73.24 73.13 72.06 71.34 71.34 71.34 71.34 71.34 71.12 99.87 99.87 99.87 88.52 97.66 
 Max 99.99 98.77 90.26 89.34 90.60 90.34 90.34 90.34 90.34 90.34 90.09 99.99 99.99 99.99 99.34 99.27 

0.4 Min 99.46 1.45 1.38 1.09 4.72 0.17 0.17 0.17 0.17 0.17 0.27 99.46 99.46 99.46 28.62 90.52 
 Avg 99.87 74.14 71.87 72.74 73.77 74.02 74.02 74.02 74.02 74.02 71.27 99.87 99.87 99.87 82.66 97.75 
 Max 99.99 99.29 99.20 98.80 98.52 98.60 98.60 98.60 98.60 98.60 99.13 99.99 99.99 99.99 99.73 99.22 

0.5 Min 98.84 0.01 1.00 0.02 0.05 1.72 1.72 1.72 1.72 1.72 2.78 98.84 98.84 98.84 53.46 92.77 
 Avg 99.82 56.79 62.29 65.23 65.81 71.11 71.11 71.11 71.11 71.11 72.68 99.82 99.82 99.82 84.38 97.66 
 Max 99.99 99.48 99.90 98.93 99.37 99.54 99.54 99.54 99.54 99.54 98.22 99.99 99.99 99.99 99.69 99.07 

0.6 Min 98.82 3.95 1.49 1.39 0.96 0.23 0.23 0.23 0.23 0.23 0.38 98.82 98.82 98.82 24.85 90.30 
 Avg 99.80 54.15 53.27 53.69 57.57 56.37 56.37 56.37 56.37 56.37 56.77 99.80 99.80 99.80 81.77 97.38 
 Max 99.99 99.63 98.72 99.66 99.96 99.85 99.85 99.85 99.85 99.85 99.85 99.99 99.99 99.99 99.68 99.00 

0.7 Min 98.35 0.21 1.24 2.06 2.15 1.37 1.37 1.37 1.37 1.37 0.77 98.35 98.35 98.35 50.73 84.09 
 Avg 99.79 52.17 47.75 47.98 49.49 52.07 52.07 52.07 52.07 52.07 52.45 99.79 99.79 99.79 92.62 96.84 
 Max 99.99 90.56 99.86 99.85 99.86 99.91 99.91 99.91 99.91 99.91 99.95 99.99 99.99 99.99 99.72 99.18 

0.8 Min 97.60 2.30 0.88 0.48 0.09 0.54 0.54 0.54 0.54 0.54 0.54 97.60 97.60 97.60 76.54 89.63 
 Avg 99.79 44.99 49.55 48.81 50.04 53.01 53.01 53.01 53.01 53.01 52.12 99.79 99.79 99.79 95.18 97.01 
 Max 99.99 82.20 99.95 99.94 99.94 99.94 99.94 99.94 99.94 99.94 99.95 99.99 99.99 99.99 99.71 99.20 

0.9 Min 97.14 2.91 1.65 0.45 0.27 0.18 0.18 0.18 0.18 0.18 0.04 97.14 97.14 97.14 70.32 87.29 
 Avg 99.80 41.84 48.52 48.40 48.34 49.97 49.97 49.97 49.97 49.97 50.05 99.80 99.80 99.80 95.03 97.29 
 Max 99.99 92.49 99.72 99.79 99.78 99.34 99.34 99.34 99.34 99.34 99.19 99.99 99.99 99.99 99.71 99.22 

1.0 Min 89.51 1.99 0.21 0.91 0.65 0.35 0.35 0.35 0.35 0.35 0.17 89.51 89.51 89.51 71.31 94.61 
 Avg 99.63 35.73 42.95 43.32 44.70 45.05 45.05 45.05 45.05 45.05 44.94 99.63 99.63 99.63 93.99 97.60 
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Table 2. Maxima of two poles of a transfer function with an open loop for 16 scheduling methods. 

α 
ToB(α) 

EP ES SEPT LEPT FCFS 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.0 -4E-8 -1E-3 -5E-4 -4E-4 -2E-4 -2E-4 -2E-4 -2E-4 -2E-4 -2E-4 -7E-5 -4E-8 -4E-8 -4E-8 -2E-8 -3E-6 

0.1 -1E-8 -2E-6 -2E-6 -3E-6 -4E-6 -4E-6 -4E-6 -4E-6 -4E-6 -4E-6 -4E-6 -1E-8 -1E-8 -1E-8 -8E-6 -1E-5 

0.2 -5E-7 -1E-6 -5E-6 -4E-6 -1E-6 -1E-6 -1E-6 -1E-6 -1E-6 -1E-6 -1E-6 -5E-7 -5E-7 -5E-7 -3E-5 -8E-7 

0.3 -2E-5 -7E-6 -6E-6 -6E-6 -6E-6 -6E-6 -6E-6 -6E-6 -6E-6 -6E-6 -6E-6 -2E-5 -2E-5 -2E-5 -4E-5 -7E-8 

0.4 -3E-6 -1E-5 -3E-6 -3E-6 -3E-6 -3E-6 -3E-6 -3E-6 -3E-6 -3E-6 -3E-6 -3E-6 -3E-6 -3E-6 -2E-4 -7E-6 

0.5 -1E-6 -8E-6 -1E-5 -3E-6 -2E-8 -4E-6 -4E-6 -4E-6 -4E-6 -4E-6 -1E-6 -1E-6 -1E-6 -1E-6 -1E-8 -5E-6 

0.6 -5E-7 -1E-5 -4E-6 -1E-5 -1E-5 -2E-5 -2E-5 -2E-5 -2E-5 -2E-5 -2E-5 -5E-7 -5E-7 -5E-7 -2E-7 -1E-5 

0.7 -8E-7 -2E-5 -6E-7 -1E-5 -2E-5 -1E-5 -1E-5 -1E-5 -1E-5 -1E-5 -1E-6 -8E-7 -8E-7 -8E-7 -1E-8 -1E-5 

0.8 -9E-7 -2E-5 -2E-5 -2E-5 -2E-5 -3E-6 -3E-6 -3E-6 -3E-6 -3E-6 -2E-5 -9E-7 -9E-7 -9E-7 -5E-9 -6E-6 

0.9 -4E-6 -3E-5 -2E-5 -2E-5 -2E-5 -2E-5 -2E-5 -2E-5 -2E-5 -2E-5 -2E-5 -4E-6 -4E-6 -4E-6 -6E-5 -3E-6 

1.0 -1E-7 -3E-5 -2E-5 -2E-5 -2E-5 -2E-5 -2E-5 -2E-5 -2E-5 -2E-5 -2E-5 -1E-7 -1E-7 -1E-7 -3E-8 -1E-6 

Table 3. The number of stable instances with a closed loop for 16 scheduling methods. 

α 
ToB(α) 

EP ES SEPT LEPT FCFS 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.0 116 0 0 0 0 0 0 0 0 0 0 116 116 116 51 42 

0.1 140 54 41 40 40 40 40 40 40 40 35 140 140 140 23 125 

0.2 138 50 32 31 27 29 29 29 29 29 20 138 138 138 66 123 

0.3 136 51 29 23 20 15 15 15 15 15 20 136 136 136 53 112 

0.4 140 88 84 86 77 70 70 70 70 70 68 140 140 140 34 118 

0.5 136 108 105 103 100 106 106 106 106 106 103 136 136 136 16 131 

0.6 138 97 104 104 101 100 100 100 100 100 95 138 138 138 20 137 

0.7 143 105 97 99 99 98 98 98 98 98 101 143 143 143 13 138 

0.8 143 109 106 106 105 105 105 105 105 105 103 143 143 143 7 142 

0.9 144 111 104 105 104 101 101 101 101 101 103 144 144 144 7 138 

1.0 144 121 107 105 103 101 101 101 101 101 103 144 144 144 6 141 

Table 4. Gain margins of closed-loop transfer functions for 16 scheduling methods. 

α  
ToB(α) 

EP ES SEPT LEPT FCFS 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

 Max 0.96 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.96 0.96 0.96 0.87 0.89 

0.0 Min 0.00 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

 Avg 0.17 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.17 0.17 0.17 0.17 0.36 

 Max 9.90 0.30 0.31 0.31 0.32 0.30 0.30 0.30 0.30 0.30 0.29 9.90 9.90 9.90 0.71 1.00 

0.1 Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Avg 0.18 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.18 0.18 0.18 0.12 0.09 
 Max 0.39 0.99 0.98 1.00 0.99 0.98 0.98 0.98 0.98 0.98 1.00 0.39 0.39 0.39 0.29 0.83 

0.2 Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Avg 0.02 0.28 0.19 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.02 0.02 0.02 0.11 0.15 
 Max 67.20 0.99 1.00 0.88 1.00 0.89 0.89 0.89 0.89 0.89 0.88 67.20 67.20 67.20 0.74 0.97 

0.3 Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Avg 1.03 0.28 0.24 0.24 0.24 0.23 0.23 0.23 0.23 0.23 0.24 1.03 1.03 1.03 0.10 0.24 
 Max 25.12 1.00 0.97 0.96 0.95 0.96 0.96 0.96 0.96 0.96 0.97 25.12 25.12 25.12 0.73 0.97 

0.4 Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Avg 0.33 0.34 0.34 0.33 0.32 0.31 0.31 0.31 0.31 0.31 0.32 0.33 0.33 0.33 0.10 0.25 
 Max 37.09 0.93 1.00 0.99 0.97 0.93 0.93 0.93 0.93 0.93 0.96 37.09 37.09 37.09 0.98 0.99 

0.5 Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Avg 0.65 0.34 0.35 0.35 0.35 0.37 0.37 0.37 0.37 0.37 0.37 0.65 0.65 0.65 0.13 0.24 
 Max 32.48 0.98 0.91 0.97 0.97 1.00 1.00 1.00 1.00 1.00 0.98 32.48 32.48 32.48 0.81 18.50 

0.6 Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Avg 0.57 0.29 0.30 0.32 0.32 0.34 0.34 0.34 0.34 0.34 0.34 0.57 0.57 0.57 0.19 0.36 
 Max 45.05 0.97 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.98 45.05 45.05 45.05 0.94 20.74 

0.7 Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Avg 0.41 0.28 0.29 0.29 0.30 0.30 0.30 0.30 0.30 0.30 0.31 0.41 0.41 0.41 0.22 0.38 
 Max 0.43 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.43 0.43 0.43 0.75 0.77 

0.8 Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Avg 0.02 0.28 0.27 0.26 0.27 0.26 0.26 0.26 0.26 0.26 0.28 0.02 0.02 0.02 0.25 0.18 
 Max 8.20 0.99 0.98 1.00 0.97 0.95 0.95 0.95 0.95 0.95 0.99 8.20 8.20 8.20 0.85 62.47 

0.9 Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 
 Avg 0.08 0.31 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.08 0.08 0.08 0.27 0.70 
 Max 97.92 0.98 0.99 1.00 1.00 0.97 0.97 0.97 0.97 0.97 0.95 97.92 97.92 97.92 0.77 0.87 

1.0 Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Avg 2.35 0.30 0.28 0.27 0.27 0.28 0.28 0.28 0.28 0.28 0.30 2.35 2.35 2.35 0.31 0.16 
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Table 5. Phase margins of closed-loop transfer functions for 16 scheduling methods. 

α  
ToB(α) 

EP ES SEPT LEPT FCFS 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

 Max 96.75 98.95 99.44 99.35 99.29 99.55 99.55 99.55 99.55 99.55 99.55 96.75 96.75 96.75 95.10 98.59 

0.0 Min 4.57 10.21 15.23 13.27 17.60 15.04 15.04 15.04 15.04 15.04 10.43 4.57 4.57 4.57 3.36 0.11 

 Avg 73.45 47.60 47.55 47.85 48.35 48.07 48.07 48.07 48.07 48.07 48.49 73.45 73.45 73.45 76.88 32.79 

 Max 98.79 76.79 75.19 74.69 73.99 72.02 72.02 72.02 72.02 72.02 73.19 98.79 98.79 98.79 91.26 97.34 

0.1 Min 10.57 0.04 0.76 0.05 0.29 0.89 0.89 0.89 0.89 0.89 0.38 10.57 10.57 10.57 0.06 1.10 
 Avg 84.27 30.78 33.17 33.05 33.76 33.56 33.56 33.56 33.56 33.56 33.15 84.27 84.27 84.27 28.64 47.85 
 Max 99.73 97.13 96.32 96.84 97.06 96.97 96.97 96.97 96.97 96.97 96.99 99.73 99.73 99.73 81.74 98.93 

0.2 Min 14.82 0.31 2.02 0.77 0.45 0.21 0.21 0.21 0.21 0.21 0.07 14.82 14.82 14.82 0.41 0.20 
 Avg 82.20 43.49 44.96 44.69 45.24 44.66 44.66 44.66 44.66 44.66 44.28 82.20 82.20 82.20 30.85 54.40 
 Max 97.82 98.17 94.67 94.67 94.63 94.58 94.58 94.58 94.58 94.58 94.53 97.82 97.82 97.82 97.10 98.53 

0.3 Min 11.24 0.21 0.56 1.07 0.36 0.40 0.40 0.40 0.40 0.40 0.19 11.24 11.24 11.24 0.17 1.77 
 Avg 77.77 52.58 51.90 53.13 50.06 49.80 49.80 49.80 49.80 49.80 50.39 77.77 77.77 77.77 38.93 57.17 
 Max 98.76 99.45 93.61 93.68 98.26 98.47 98.47 98.47 98.47 98.47 99.82 98.76 98.76 98.76 88.41 96.75 

0.4 Min 8.74 6.40 1.05 0.08 0.80 1.44 1.44 1.44 1.44 1.44 1.88 8.74 8.74 8.74 0.32 3.98 
 Avg 79.91 58.94 50.53 52.58 53.92 55.08 55.08 55.08 55.08 55.08 55.04 79.91 79.91 79.91 52.45 64.02 
 Max 98.26 99.13 99.43 98.24 97.29 95.39 95.39 95.39 95.39 95.39 92.78 98.26 98.26 98.26 99.63 99.38 

0.5 Min 16.12 1.34 0.04 1.92 1.47 0.99 0.99 0.99 0.99 0.99 0.94 16.12 16.12 16.12 0.34 1.89 
 Avg 81.97 62.96 60.83 60.62 60.53 60.73 60.73 60.73 60.73 60.73 60.96 81.97 81.97 81.97 72.30 62.21 
 Max 94.47 92.31 92.42 92.05 92.39 92.20 92.20 92.20 92.20 92.20 98.50 94.47 94.47 94.47 89.33 97.94 

0.6 Min 23.83 2.90 6.64 3.17 6.98 8.50 8.50 8.50 8.50 8.50 8.30 23.83 23.83 23.83 0.42 0.31 
 Avg 82.71 67.62 67.11 66.29 65.82 65.02 65.02 65.02 65.02 65.02 65.14 82.71 82.71 82.71 67.78 64.31 
 Max 93.26 98.00 94.72 96.68 97.62 97.17 97.17 97.17 97.17 97.17 92.09 93.26 93.26 93.26 89.26 99.34 

0.7 Min 11.62 11.29 9.27 8.46 12.89 14.39 14.39 14.39 14.39 14.39 15.71 11.62 11.62 11.62 3.38 4.52 
 Avg 81.37 71.71 69.82 69.66 69.83 70.08 70.08 70.08 70.08 70.08 69.38 81.37 81.37 81.37 71.74 68.44 
 Max 92.75 91.65 96.63 91.83 91.85 95.44 95.44 95.44 95.44 95.44 98.70 92.75 92.75 92.75 88.48 98.03 

0.8 Min 15.90 2.37 1.33 1.88 1.59 2.16 2.16 2.16 2.16 2.16 1.16 15.90 15.90 15.90 38.98 23.58 
 Avg 80.69 71.59 73.82 72.93 72.59 72.95 72.95 72.95 72.95 72.95 72.69 80.69 80.69 80.69 73.06 72.93 
 Max 91.87 91.46 95.84 95.57 94.87 94.94 94.94 94.94 94.94 94.94 95.00 91.87 91.87 91.87 96.22 99.64 

0.9 Min 12.33 1.47 0.22 3.40 3.54 2.26 2.26 2.26 2.26 2.26 0.23 12.33 12.33 12.33 47.04 12.59 
 Avg 80.34 69.72 73.25 73.86 73.49 73.89 73.89 73.89 73.89 73.89 74.47 80.34 80.34 80.34 72.72 74.87 
 Max 94.27 91.34 93.98 95.47 93.34 93.60 93.60 93.60 93.60 93.60 94.58 94.27 94.27 94.27 91.35 98.99 

1.0 Min 22.80 2.95 1.46 0.93 0.72 6.59 6.59 6.59 6.59 6.59 9.06 22.80 22.80 22.80 26.33 2.23 
 Avg 80.24 70.89 71.57 71.68 72.32 72.52 72.52 72.52 72.52 72.52 72.52 80.24 80.24 80.24 69.65 75.67 

Table 6. Average gain margins across 5 CV levels of processing time uncertainties with even preferences on KPIs for 16 scheduling methods. 

CV 
ToB(α) 

EP ES SEPT LEPT FCFS 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.1 0.29 0.40 0.41 0.41 0.43 0.43 0.43 0.43 0.43 0.43 0.45 0.12 0.72 0.29 0.29 0.16 

0.2 1.56 0.36 0.38 0.39 0.39 0.41 0.41 0.41 0.41 0.41 0.40 1.29 0.51 1.56 0.30 0.17 

0.3 0.62 0.34 0.35 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.39 0.55 0.54 0.62 0.40 0.14 

0.4 0.38 0.34 0.42 0.37 0.35 0.37 0.37 0.37 0.37 0.37 0.43 0.35 0.23 0.38 0.47 0.40 

0.5 0.29 0.30 0.56 0.33 0.35 0.33 0.33 0.33 0.33 0.33 0.35 0.16 0.74 0.29 0.58 0.52 

Avg 0.63 0.35 0.43 0.37 0.38 0.38 0.38 0.38 0.38 0.38 0.40 0.49 0.55 0.63 0.41 0.28 

Table 7. Average phase margins across 5 CV levels of processing time uncertainties with even preferences on KPIs for 16 scheduling methods. 

CV 
ToB(α) 

EP ES SEPT LEPT FCFS 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.1 87.28 58.88 54.46 53.82 53.72 52.03 52.03 52.03 52.03 52.03 53.05 87.20 87.33 87.28 61.18 67.54 

0.2 87.61 58.89 55.19 54.95 53.99 53.29 53.29 53.29 53.29 53.29 52.82 88.33 87.81 87.61 56.80 67.91 

0.3 87.19 60.63 58.57 56.62 58.09 55.26 55.26 55.26 55.26 55.26 57.29 87.72 86.17 87.19 53.83 69.90 

0.4 85.24 63.97 61.89 61.00 61.46 60.38 60.38 60.38 60.38 60.38 60.79 86.17 86.45 85.24 46.21 72.46 

0.5 86.38 67.44 64.53 64.57 62.59 64.13 64.13 64.13 64.13 64.13 61.76 86.36 85.39 86.38 39.23 72.35 

Avg 86.74 61.96 58.93 58.19 57.97 57.02 57.02 57.02 57.02 57.02 57.14 87.16 86.63 86.74 51.45 70.03 
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Fig 1. Gain and phase margins in a Bode plot.  Fig. 2. Trend plot of gain margins across CVs.  Fig. 3. Trend plot of phase margins across CVs.  
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