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Capacity is the maximum short run output with capital in place under normal operations, and capital

investment increases capacity. Excess capacity can be used as an economic strategy for entry deterrence by

lowering average costs over a greater range of output, and as an operations strategy providing value through

flexibility to manage demand fluctuations and production disturbances. Our primary focus is to study the

way that information technology (IT) can contribute to a strategy of holding excess capacity by comparing

the relationship between IT capital and capacity with that of non-IT capital and capacity. Using production

theory-based empirical analyses, we find that increases in IT capital yield almost four-fold greater expansion

in capacity than do increases in non-IT capital. Thus, as both types of capital are constraints on capacity,

for a strategy of holding excess capacity IT capital is a more valuable constraint to relax than non-IT

capital. In addition, since the late 1990s, IT capital, and to a lesser extent non-IT capital, have reduced

capacity utilization (output/capacity), meaning increasing levels of excess capacity are being held across

manufacturing industries and utilities across the economy.
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1. Introduction

The capacity of industries to produce goods and services, and the utilization of that capacity, is

a critical determinant of our collective quality of life. Firms invest in different types of capital

to enable levels of productive capacity (hereafter, capacity) that allow production of goods and

1



Zhang, Nault and Wei: The Strategic Value of IT in Setting Productive Capacity
2

services at minimum efficient scale where average costs are minimized, and for the most part

these low costs are ultimately passed along to consumers. At the same time, the levels of capacity

utilization (CU), both for industries and in aggregate for the economy, reflect demand pressure

where high demand pressure usually results in inflation pressure. As capacity is determined by the

amounts of different types of capital in place, capital investments take a central role.

We examine a previously overlooked strategic use of information technology (IT): how IT can

be used as part of a strategy to hold excess capacity. We adopt the definition of capacity from

the Federal Reserve Board (FRB) which defines capacity as the ”sustainable maximum output -

the greatest level of output a plant can maintain within the framework of a realistic work schedule,

after factoring in normal downtime and assuming sufficient availability of inputs to operate the

capital in place” (Corrado, Gilbert, and Raddock 1997). CU is then the ratio of actual output to a

sustainable maximum output, or capacity. Capacity is inherently a short-run concept, constrained

by capital in place and achieved by adding variable inputs to the limit of what the capital in place

can accommodate.

There are a few things worth noting in this definition of capacity. First, these are maximum

output levels that can be maintained over time. Next, capacity is not profit-maximizing output –

output that should depend on prices. This definition is not necessarily profit-maximizing capacity,

although it could be if capital investments are made inter-temporally with this objective. This

definition also determines what is fixed and what is variable in the short-run, where short-run is

understood to be one year. Capital, both IT and non-IT, is fixed in the short-run – in practice this

means the capital in place and the annual capital plan that all firms have. Labor and intermediate

inputs (e.g., materials, energy, purchased services) are variable.

For capacity to increase, the cost structure of production must change as a result of an increase

in capital. As capital costs such as interest and depreciation do not change with output, they are

fixed costs. Consequently, minimum average costs are reached at a higher level of output, and

diminishing returns ultimately cause the short-run average costs curve to increase with increasing
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output until it reaches capacity. An increase in capacity means a change in flexibility to increase

output. Sufficient capacity enables firms to avoid installation of new capital such as technology or

machinery, and the calibration of newly-installed production processes, both that require lead-time.

Thus, higher levels of capacity allow output to be expanded more before needing new capital.

Our underlying message is that IT can be used strategically as part of a greater strategy of

holding excess capacity. For example, CiscoSystems, Inc. invested in Enterprise IT and internet

applications around 1994 to streamline processes, enhance capacity, and maximize employee pro-

ductivity. These IT investments consequently empowered Cisco with enhanced capability to seize

new market opportunities, deter entries and thus strengthen its leadership position in the telecom-

munications equipment market. Dell Inc. also invested heavily in IT to revamp its supply chain

management and electronic commerce to implement the direct-sales model and mass customiza-

tion. Part of the goal with such investments in IT is to substantially improve efficiency, production

flexibility, and capacity which could serve as entry barriers and protect market shares. As a result,

between 1994 and 1998, Dell grew twice as fast as its major rivals in the personal computer market

and tripled its market share. More recently, the popularity of smart manufacturing empowered

by advanced IT has the potential to greatly improve capacity and thus firms’ responsiveness to

fluctuating marketing demand.

From the above industrial examples, we see that the strategy of investing in IT to hold excess

capacity plays out in two ways. The first is excess capacity as entry deterrence, a strategy that has

been studied in economics for over 30 years (e.g., Kamien and Schwartz 1972, Spence 1977, Dixit

1980, Spulber 1981, Bulow et al. 1985). Capital investments such as IT are irreversible preemptive

commitments that can last for years. Incumbent firms with excess capacity can increase output

in the short-run, increasing supply and consequently reducing price, either deterring new entry or

causing a new entrant with lesser capacity to exit. Indeed, in the entry game the excess capacity

may remain idle, acting simply as a deterrent. A side benefit of excess capacity is greater entry

upstream and downstream: excess capacity signals commitment to a more stable, reliable, and

profitable supply chain (von Ungern-Sternberg 1988).



Zhang, Nault and Wei: The Strategic Value of IT in Setting Productive Capacity
4

Excess capacity can also be used as an operations strategy providing value through flexibility.

Responding to demand fluctuations and production disturbances requires cost-efficient output flex-

ibility from excess capacity (Sheshinski and Dreze 1976, Gabszewicz and Poddar 1997). Capital

investments in technology are often viewed as a hedge against demand fluctuations, allowing output

to vary over time (Yang et al. 2011, Yang et al. 2014). Excess capacity allows flexible output expan-

sion at lower average costs, and with shorter lead-times: lead-time to increase capacity (capital)

creates shortage risk (Ryan 2004). Facing demand fluctuations, excess capacity provides buffers for

scheduling and inventory in interconnected production systems like just-in-time. Indeed, a focus

in operations has been on capacity expansion or optimal capacity in the presence of high demand

uncertainty (see Luss (1982), for a survey of capacity expansion models and Zhang, Roundy,

Cakanyildirim, and Huh (2004) on capacity planning).

As an important economic indicator, CU is a more common context in which government, firms

and researchers take notice of capacity. It is a key determinant of corporate profitability and an indi-

cator of macroeconomic performance (Paraskevopoulos and Pitelis 1995). CU has been employed in

empirical studies to explain inflation, unemployment, investment, productivity measurement, and

inventory, and as we indicated earlier, is often used as an indicator of aggregate demand pressure

(Schultze 1963, Greenwood, Hercowitz and Huffman 1988, Shapiro, Gordon and Summers 1989,

Gordon 1989, 1998, Dexter, Levi and Nault 2005, etc.).

Where does IT come in? A wide variety of IT capital affects capacity. Milgrom and Roberts

(1990) suggest that IT drives modern manufacturing that emphasizes quality and a speedy

response to market conditions. Indeed, manufacturing technologies such as numerically controlled

machines (CNC), flexible manufacturing systems, computer-integrated manufacturing, robotics,

programmable controllers, and modular assemblies, as well as automated adaptive scheduling all

make it easier to adjust the level and composition of output. Inter-organizational information sys-

tems, Enterprise Resource Planning, E-commerce platforms, and supply chain management systems

all help to reduce cost and improve efficiencies independent of output scale. With the maturity of
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Internet standards these systems further reduce transaction costs and enable better coordination

and business processes (Gong, Nault and Rahman, 2016).

Research on IT productivity suggests that IT capital is a general-purpose technology, which

differs from most non-IT capital. Some argue that IT enables complementary organizational invest-

ments such as business processes and work practices leading to cost reductions and quality improve-

ments (Brynjolfsson and Hitt 2000). For example, IT capital is an enabler of more advanced manu-

facturing strategies, and to some degree, it is the strategies enabled by IT that results in increased

productivity and capacity. Higher levels of IT are associated with increased delegation of powers

to smaller units and greater levels of workforce skills and education (Bresnahan, Brynjolfsson and

Hitt 2002). IT has also substituted for routine labor tasks and complemented non-routine cognitive

tasks (Autor, Levy and Murnane 2003). Apart from the direct business value IT generates, IT

augments non-IT capital and labor (Mittal and Nault 2009), and IT capital from adjacent indus-

tries has significant spillover effects as IT investment made upstream (downstream) significantly

impacts productivity downstream (upstream) (Cheng and Nault 2007, 2012).

Although additional IT capital increases capacity, IT can have conflicting effects on CU. In

some cases, IT capital may lead to more efficient production and increased CU. For example,

CNC provides opportunities to increase CU by making manufacturing more flexible such that

machines can be used for a variety of operations (Koltai and Stecke, 2008). Barua, Kriebel and

Mukhopadhyay (1995) find that IT improved intermediate process-level measures such as CU and

inventory turnover. Through case studies in elevators, retailing, telecommunications and investment

banking, Nightingale et al. (2003) show that IT-based control systems that are commonly used to

coordinate the flow of goods, traffic, materials, funds, services or information can effectively improve

the allocation of system traffic, thus increasing CU. Hubbard (2003) finds that on-board computers

reduce idle time and improve efficiency in trucking, also increasing CU. These studies examine

a particular IT application or group of applications, and concentrate on increased utilization of

existing capacity without necessarily incorporating the effects of IT on expanding capacity.
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In contrast to all of the studies cited above that mostly focused on pre-2000 examples, and in

contrast to the pre-2000 results on CU that we find based on productivity theory, Bansak, Morin

and Starr (2007) find that increased use of technology reduces CU, albeit by a small amount.

Their analysis is based on a subset of manufacturing industries and relies on a simple estimation

model by amassing an ad hoc collection of variables on the right-hand-side (other than IT) that

the authors thought might influence or control for the relationship between IT and CU.

Our Focus: We study the way that IT can contribute to a strategy of holding excess capacity

by comparing the relationship between IT capital and capacity with that of non-IT capital and

capacity. With actual output commonly understood and capacity defined as above, we can illustrate

our analyses using the graphs in Figures 1a and 1b, and Figure 2a and 2b.

We concentrate on the impact of quasi-fixed (i.e., unchangeable in the short-run) input con-

straints on capacity that come from IT capital and non-IT capital. Moreover, we focus exclusively

on the production side of the story. That is, we do not study how firms manage their capacity or

CU rate to match market demand. Rather, we examine the impact of IT capital relative to non-IT

capital on capacity and CU from a production theory perspective.

Capital

non- IT Capital

IT Capital

Capacity

Capital

IT Capital

non- IT Capital

Figure 1a Figure 1b

Capacity

Figure 1 Capacity response to IT and non-IT capital
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In Figures 1a and 1b capacity increases in response to increases in IT and non-IT capital: in

Figure 1a capacity increases at a greater rate in response to IT capital increases than it does in

response to non-IT capital increases, and Figure 1b shows the opposite effects. The lines in Figure

1a and 1b differ in their steepness in response to increases in the different types of capital. Thus, if

our results support Figure 1a, then additional investments in IT capital better support a strategy

of holding excess capacity than additional investments in non-IT capital. Determining increases

in capacity from increases in IT capital relative to increases in non-IT capital is the main focus

and contribution of our analyses. A priori it is reasonable to expect that the marginal returns

to each type of capital are not significantly different for output in a long-run equilibrium, and

consequently should not be for capacity. Finding differences in marginal returns to capacity from

changes in different capitals suggest that IT capital versus non-IT capital are being used differently

and strategically in the setting of capacity.

Capacity

Output

IT Capital

Capacity

Output

IT Capital

Figure 2a Figure 2b

Production Quantity Production Quantity

Figure 2 Output and capacity response to increased IT capital

In addition, there are two directions in which recent technological changes such as an increase in

IT capital may have an impact on CU. The first is using investments in IT capital to increase excess

capacity - operating at lower average utilization – to be able to handle demand fluctuations. In
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this way, the scalability of IT capital is used to extend economies of scale in production, effectively

extending the lower portion of the average cost curve to higher levels of production. Bansak, Morin

and Starr (2007) also suggest automated design and modular units make capacity expansion faster

and cheaper, an argument consistent with higher levels of excess capacity. Alternatively, IT capital

may allow firms to use capacity more efficiently, effectively lowering the lower portion of the average

cost curve so that firms can produce higher levels of output more cost effectively before hitting the

capacity limit. Of course, IT capital both changes capacity via increasing quasi-fixed assets and

changes the average marginal product of capital. In Figures 2a and 2b output and capacity are

increasing in IT capital. In Figure 2a the rate of increase in capacity from increases in IT capital is

larger than that of output. Consequently, increases in IT capital have a greater impact on capacity

than on output, and as a result when IT capital is expanded CU decreases. The alternative whereby

the rate of increase in output is greater than that of capacity when IT capital is increased is shown

in Figure 2b. In this case, when IT capital is expanded CU increases.

Organization of the Analysis: We first explain the distinction between output and capacity, which

highlights the roles of quasi-fixed and variable inputs. Then, we use two industry examples – a pulp

and paper plant, and a molding factory – to explain how the variable inputs to production (labor

and intermediate inputs) would not be expanded in a straightforward way (say, proportionally) as

production is expanded to capacity. We then derive separate estimation forms for actual output,

capacity, and CU based on the Cobb-Douglas production function. Next, we estimate our mod-

els using cross-sectional time series industry-level datasets that cover mainly U.S. manufacturing

industries across broad 13-year and 16-year time periods. Industry-level data is appropriate as an

industry can be viewed as a set of organizations that are homogeneous in technology, production,

and operations, and thus need to maintain a healthy level of capacity for similar reasons (Chiasson

and Davidson 2005).

We find that both IT and non-IT capital have significant contributions to capacity. More impor-

tantly, increases in IT capital yield approximately four-fold greater changes in capacity than do
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increases in non-IT capital. Thus, as a constraint determining capacity, IT capital is a more valuable

constraint to relax than non-IT capital, and is the dominant investment choice when implementing

a strategy of holding excess capacity. We also confirm that both IT and non-IT capital have helped

to reduce the CU rate since the late 1990’s, seemingly after the advent of the Internet and the

growth of enterprise software applications. We then examine a series of potential threats to our

estimations using an extensive set of robustness tests that effectively confirm our results, making

these available in our Appendix. We end with a summary of our conclusions, and a discussion of

our contributions, implications, potential limitations and future research.

2. Our Model
2.1. Output and Capacity

We use production theory to illustrate the distinctions between actual output (hereafter, output)

and capacity. This distinction is best described at the firm level, and the resulting output and

capacity aggregates to the industry level.

To begin, we follow convention and take output and capacity as measures defined over the

short-run such as a calendar or fiscal year. CU is then defined as output divided by capacity. In

the short-run capital is quasi-fixed, meaning that IT capital and non-IT capital do not change in

the short-run (Corrado et al 1997). Although in reality IT capital and non-IT capital do change

throughout a year due to new capital investment and retirement/depreciation, these are typically

the result of a capital plan set at the start of the year. Consequently, in practice IT capital and

non-IT capital are pre-determined at the start of the year. We measure the capital stocks at a

single point in time during the year, typically the end of the year.

Next, viewing the firm as a production function defines output as a function of inputs, typically

IT and non-IT capital stocks that are quasi-fixed, and labor and intermediate inputs that can be

adjusted to achieve a given level of output. Production as a function of the inputs takes input and

output prices as constant over the short run – in practice this can be an annual average output

price, an average wage rate and an average cost of intermediate inputs. A production function is
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not meant to reflect a sequence of decisions between inputs and output, rather it relates inputs to

output and assesses the marginal product of each input.

Producing at capacity follows a systematically different production process than producing profit-

maximizing output in terms of productivity of the inputs. Because firms are profit-maximizing

entities, the output we observe is the level of output a firm produces in order to maximize their

profits. This output results from levels of labor and intermediate inputs that are selected in order

to maximize profits, and these levels of labor and intermediate inputs are the inputs we observe.

These profit-maximizing levels of output, labor and intermediate inputs are unlikely to fully utilize

the quasi-fixed inputs, IT and non-IT capital. It is worth recognizing that profit-maximizing output

depends on a variety of factors including market demand, strategic decisions, financial restrictions,

etc., factors we take as reflected in output prices and inputs prices.

For capacity, however, firms produce their “sustainable maximum output” (see Introduction) by

increasing labor and intermediate inputs to the point that additional labor or intermediate inputs

cannot generate further production, and as such the quasi-fixed inputs, IT and non-IT capital, are

fully utilized. As capacity is a hypothetical measure, we do not observe capacity nor the levels

of labor and intermediate inputs necessary to reach capacity, although we do measure the capital

stocks. The FRB and other organizations obtain estimates of capacity, which we can observe,

but they do not obtain estimates of the labor and intermediate inputs necessary to provide for

sustainable maximum output.

IT productivity research has predominantly focused on IT’s impact on profit-maximizing output.

However, the output and capacity are distinct in the way inputs are managed and utilized for

production. Therefore, we expect that the output elasticities of inputs and total factor productivity

(TFP) all differ when firms are producing at the hypothetical “sustainable maximum output” level,

or at capacity, as compared to profit-maximizing output.

Expanding Labor and Intermediate Inputs for Capacity: The degree to which labor and inter-

mediate inputs are expanded to produce at capacity not only differ between industries, it is also
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non-linear within industries. Our first example, and a straightforward illustration of the former, is a

modern capital-intensive pulp and paper plant. Such plants only require a fixed number of workers

to produce across a range of output levels due to high levels of automation. Thus, increasing from

profit-maximizing output to capacity may involve no additional labor, and at the same time may

require additional intermediate inputs (energy, chemicals, wood chips). If a second shift is required,

then labor doubles while production (and intermediate inputs) is increased continuously.

Our second example illustrates a more involved setting adapted from part of the Harvard Business

Case “Capacity Analysis: Sample Problems” (9-696-058). Consider a molding factory that produces

an automobile component. There are ten in-house software-controlled molding machines equipped

with advanced technologies. Each machine requires a single full-time operator whose job includes

loading, unloading, actively monitoring, and making necessary adjustments to the machines. Profit-

maximizing output only requires six molding machines and their operators run a single shift in a

given day. To assemble all the molded parts produced in a given day together with other parts,

which are freely available, requires fifteen assemblers working a single shift to make the final

components.

In order to produce at capacity during a single shift, the factory would need an additional four

operators; and in order to assemble the molded parts from 10 molding machines, the assembly

line needs to be running at its fastest speed requiring twenty workers at the same time. Therefore,

the factory would need at least another five workers on the assembly line during a single shift.

During this short-run production boost from output to capacity, a two-thirds increase, the total

amount of IT and non-IT capital stock remain fixed. However, the increase in labor input varies

from two-thirds more operators to only one-third more assemblers.

What we see from these two examples is that it is not a simple matter to determine the economies

of scale for labor and intermediate inputs as production is expanded from profit-maximizing output

to capacity, and that these economies of scale depend on the capacity of the quasi-fixed capital in

place. Referring to our molding factory example, additional labor can be used only to the degree
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that there are more machines in place. Furthermore, if the molding machines are of less advanced

technology requiring two full-time operators at the same time, using more materials to run at the

same rate as the more advanced technology machines, then there is a doubling of labor and an

increase in intermediate inputs without an increase in capacity. Therefore, IT and non-IT capital

constrain the sustainable maximum output by bounding the maximum amount of usable labor and

intermediate inputs.

Beyond these types of examples, there are subtle effects on the productivity of inputs as pro-

duction is expanded that depend on the different types of capital. For example, as we noted in the

Introduction, IT capital may affect organizational efficiency (Brynjolffson and Hitt 2000), and IT

capital has been shown to augment labor and non-IT capital (Mittal and Nault 2009) and have

supply chain spillover effects on quality and coordination (Cheng and Nault 2007, 2012).

Both of our examples are at the plant-level, our entry deterrence and production flexibility

strategies are at the firm level, and as will be seen below, our analysis of capacity and CU are

aggregated at the industry level. To understand how our approach bridges these levels, we first

recognize that the FRB uses plant-level surveys (Survey of Plant Capacity) as the major input to

its calculations of industry capacity and industry capacity utilization. Therefore, the measures we

use are aggregated from the plant-level.

Second is disaggregating from the industry-level to the firm-level. Following classic work from

economics, results from the industry-level can be applicable to the firm-level: “· · · the production

function for any particular firm may conceptually be obtained from the industry function in terms

of the firm’s ability to implement optimal values of parameters in the industry” (Aigner and Chu

1968, p. 826). Aigner and Chu (1968) further argue that an industry-level production function

can be understood as the production function of an “average” firm in the industry: “· · · we can

approximate an “average” firm production function when we have data only on industry aggregates

· · · , the latter points is especially important because in practice data at the firm level are usually

not available” (p. 830).
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2.2. Estimation model

Productive capacity and CU are conditional on the firm’s stock of quasi-fixed inputs, that is, inputs

that are not adjustable within a given year. We consider a firm that produces only one output with

two variable inputs and two quasi-fixed inputs. In order to be comparable and compatible with the

bulk of research on the productivity of IT, our production function for output is based on a simple

Cobb-Douglas (CD) form,

Y = ALαKβZγM θ, (1)

where Y is output measured in real dollars, L is labor hours or full-time equivalents, K is the

stock of non-IT capital measured in real dollars, Z is the stock of IT capital measured in real

dollars, and M is intermediate inputs also measured in real dollars. The simple CD form represents

production for a defined period of time, for example a year. Output, labor and intermediate inputs

are flows, and the two capitals are stocks. In some formulations, the capital stocks are converted

to flows by the rental price method, although there is generally little effect on the estimates. A

is the technical change parameter, usually representing TFP. The parameters α, β, γ and θ are

the output elasticities of labor, non-IT capital, IT capital, and intermediate inputs respectively.

The output elasticities represent the percentage increase in output from a marginal percentage

increase in the input. Using lower-case letters to represent the (natural) logs of the corresponding

upper-case letters, the simple CD production function in logs is

y = a + αl + βk + γz+ θm. (2)

Notice that the variables in (1) and (2) are the actual values of inputs that were used by industries

and the actual values of output that were produced.

We chose the simple CD form because there is research that provides a theoretical basis for the

CD form based on the income accounting identity, and a recent application of this in the context of

IT can be found in Kundisch et al., 2014. This work shows that the CD form is flexible in various

dimensions such as aggregation, and that many of the restrictions some researchers worry about in
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the CD form are captured in TFP. Consequently, the simple CD form is well-suited as a production

function for output. Given that we use the CD form in our estimation of output, we also use it in

our estimation form for capacity below. Although the theoretical basis in Kundisch et al. (2014)

was only empirically tested on output, the well-known advantages of the CD form in the economic

interpretation of the estimates (output elasticities) also apply to its use in estimating capacity.

Moreover, as we show below, using the CD form for both output and capacity allow us to derive

a clean estimation form for CU.

To model the relationship between inputs and capacity (rather than output) we take IT and non-

IT capital as quasi-fixed, and labor and intermediate inputs as variable inputs that are available

in sufficient quantities and at current market prices as to achieve sustainable maximum output.

These definitions are consistent with the measures obtained from the FRB, which we discuss in

more detail in the data description below.

With our measure of capacity, which we write as Yc or yc in log form, and using a CD-based

production function form in order to make our estimates comparable with the output equation in

(1), we represent capacity production as

Yc = AcL
αc
c K

βcZγcM θc
c , (3)

and in logs

yc = ac + αclc + βck + γcz+ θcmc. (4)

In (3) and (4) we use the subscript c to denote terms in the capacity model, and our interest is

in the two output elasticities of capital, βc and γc. As we discussed earlier, producing at capacity

follows a systematically different production process than producing profit-maximizing output in

terms of productivity of the inputs. Labor and intermediate inputs as variable inputs are marked

with the subscript c to indicate their levels when producing at capacity, and the two types of

capital – the quasi-fixed inputs, are kept at the same levels as they are when producing at the level

of profit-maximizing output. Thus, (4) captures the relationship between the inputs, some variable
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and some fixed, required to produce a level consistent with maximum sustainable output. In other

words, given fixed IT capital and non-IT capital, (4) embodies the increased levels of labor and

intermediate inputs needed to produce at capacity.

Our focus is on the marginal products of non-IT capital and IT capital, βc and γc. This is

because comparing the marginal products allows us to conclude which type of capital is a more

valuable constraint on capacity to relax. Specifically, the output elasticities represent the effects of

the inputs on capacity in terms of percentages, whereas the marginal products demonstrate such

effects in terms of dollar returns. If the marginal product of IT (non-IT) capital is greater than that

of non-IT (IT) capital, then a dollar spent increasing IT (non-IT) capital yields a greater increase

in capacity. Because capacity is defined as sustainable maximum output, (3) and (4) are essentially

results of a constrained optimization where the amounts of non-IT capital and IT capital are the

constraints. Therefore, another way to understand the output elasticities (marginal products) of

the two capitals is shadow prices: they represent the marginal return in percentage (actual dollars)

to capacity by relaxing the constraint of keeping capital fixed from (2) to (4) by one percent (one

dollar).

For estimating our capacity equation in (4) we have data for the inputs when producing actual

output, and a measure of capacity. Two of the inputs, IT capital and non-IT capital, remain the

same when producing at output or at capacity. For the other two inputs, labor and intermediate

inputs, we do not have data for when producing at capacity. The figures we need for labor and

intermediate inputs are hypothetical in that they are quantities of labor and intermediate inputs

needed to produce at capacity. The question is how to scale up labor and intermediate inputs to

the hypothetical figures they might assume when producing at capacity. Our examples of the pulp

and paper plant and of the molding factory discussed earlier make it clear that any mathematically

systematic scaling would not hold across heterogeneous industries, and that the scaling for labor

likely differs from that for intermediate inputs.

Recognizing industry heterogeneity in how labor and intermediate inputs would be scaled up

from producing output to producing at capacity, we use industry dummy variables to scale up
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labor and intermediate inputs so that the scale up for each of labor and intermediate inputs varies

across industries. Essentially, we resolve the scale up problem by allowing the data to estimate the

scale ups in the context of a CD production function form. Using industry-level data, we can allow

any industry to be the base industry, and estimate a variant of (4),

yc = ac + δc,0l+
∑
i 6=0

δc,idil + βck + γcz+ ηc,0m+
∑
i 6=0

ηc,idim, (5)

where the summation is over the total number of industries minus one, di is an industry dummy

variable with i representing a specific industry, and δc,j and ηc,j (j ∈ {0, i}) are to be estimated.

Here δc,0 and ηc,0 capture the scaled levels and output elasticities of the variable inputs for the base

industry, and δc,i and ηc,i capture the scaled levels and output elasticities of the variable inputs for

industry i (i 6= 0) relative to the base industry.

Due to the industry dummy variables, we estimate different coefficients for each industry for

both labor and intermediate inputs. Putting this together, in (5) we use δc,0l+
∑

i6=0 δc,idil as an

approximation for the product of scaled labor and its output elasticity, which is αclc in (4). It is

worth observing that δc,0 is a base industry mixture of output elasticity and scale up, and δc,i,

which can assume any sign, is a mixture of output elasticity and scale up for industry i relative

to the base industry. We do the same for intermediate inputs (m). It is also worth recognizing

that the values of δc,j and ηc,j (j ∈ {0, i}) in (5) are not of particular interest and are not easily

interpretable because they are a mixture of output elasticities and scaling. They simply serve to

scale up the variable inputs to arrive at estimates of the output elasticities of non-IT capital and

IT capital, βc and γc, respectively. That is, we are not trying to estimate industry-specific output

elasticities for labor and intermediate inputs but rather are scaling the variable inputs in order to

obtain cross-sectional estimates for the output elasticities of IT capital and non-IT capital that

apply to capacity, which can be compared to those from the output equation in (1).

We considered other scaling methods for the variable inputs, however, none of them work in

our context because production functions represent an optimal input mix to produce a profit-

maximizing level of output. Although we can derive marginal products of labor and intermediate
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inputs or simply scale them up proportionally from the levels we observe that are needed for output

to that for capacity, these marginal products or proportional scaling are unlikely to hold through an

expansion from actual output to capacity – especially so given capital is fixed. Our pulp and paper

plant and molding factory examples show the difficulty of using current level of marginal product to

calculate the extra labor and intermediate inputs needed in order to produce at capacity. Therefore,

only in special circumstances would the variable inputs demonstrate constant returns to scale or

some other easily identifiable scaling moving from actual output production to capacity. Moreover,

from an econometric perspective, scaling up labor and intermediate inputs using marginal products

or proportional scaling would involve capacity, which is the dependent variable in (4), creating a

problem for the estimation.

Given (1) and (3), we are able to develop a reduced estimation form for CU starting from

CU =
Y

Yc
=

A

Ac

Lα

Lαc
c

Kβ−βcZγ−γc
M θ

M θc
c

,

where CU is the ratio of output over capacity, each represented by a CD production function. To

linearize the form, we take its log

logCU = (a − ac) + αl − αclc + (β−βc)k + (γ− γc)z + θm − θcmc,

where lc and mc are again hypothetical and thus not directly observable. We apply the same

scaling method as in (5) to replace lc and mc and obtain our estimation form for CU that combines

our output and capacity equations

logCU = au + δu,0l +
∑
i 6=0

δu,idil + βuk + γuz+ ηu,0m+
∑
i 6=0

ηu,idim, (6)

where au = a− ac, βu = β− βc, and γu = γ− γc. The subscript u on the coefficients represent that

they come from the CU equation, (6). Similar to (5), δu,0 and ηu,0 represent the scaled effects of

the variable inputs on logCU for the base industry, and δu,i and ηu,i capture the scaling of such

effects for industry i (i 6= 0) in this particular equation. Again, as in (5), we are only interested

in βu and γu, which measure the elasticities of non-IT and IT capital on CU. Specifically, if the
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sign is negative, it means its corresponding capital helps to reduce CU by creating more capacity

relative to output; if positive, then the effect is reversed leaving less slack capacity (e.g., increasing

the corresponding capital generates more output relative to capacity). Although we can separately

estimate β (γ) from (2) and βc (γc) from (5), (6) allows us to estimate their difference as one term

and test if it is statistically different from zero.

2.3. Data Description

As a result of the change in industry classifications implemented by U.S. Federal Government

agencies in the late 1990s, we have two cross-sectional time-series datasets covering different time

periods (1987-1999 and 1998-2013), variable definitions, and industries at different aggregation

levels. Although not ideal, the two distinct datasets allows us to generalize our findings and further

explore our research questions. Summary statistics for our two datasets and a detailed description

of the industries in each dataset are provided in Tables A1-A3 in the Appendix.

1987-1999 Dataset: This earlier dataset is the result of matching a productivity dataset with a

CU dataset, both from 1987 to 1999. The same productivity dataset is used in Cheng and Nault

(2007), collected from the Bureau of Labor Statistics (BLS), and covers 140 three-digit Standard

Industrial Classification (SIC) code manufacturing industries. The productivity dataset contains

labor input (L), IT capital stock (Z), non-IT capital stock (K), intermediate inputs (M) and gross

output (Y ). The labor input is in millions of hours. The remaining three variables are converted

to millions of 1987 dollars, by dividing their nominal values in millions by their corresponding

deflators. The labor input incorporates IT labor and accounts for changes in both raw hours

and in skill composition of the work force (i.e., education and work experience) (BLS 2007). IT

capital stock is an aggregation of the stock of computers and related equipment, office equipment,

communication, instruments, photocopy and related equipment. The instruments measure include

most of the manufacturing instruments that are elements of automation. From a breakdown of

asset types, non-IT capital stock is computed as the total of equipment and structures less IT

capital stock.
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To match the SIC-based productivity dataset, we requested SIC-based CU data from the FRB. It

covers 45 SIC code manufacturing industries at the two-digit or three-digit level from 1987 to 1999.

The FRB estimates of CU are developed from a combination of sources – about 22 percent are

from government sources and trade sources, about 73 percent are based on responses to the Bureau

of the Census’s Survey of Plant Capacity and roughly 5 percent are based on trends through peaks

in production. CU data from the FRB has been the most consistent over time, that is, a CU rate

of 85 percent today means about the same degree of tightness in production that it meant in the

past. Moreover, it covers a broad span of industries and sufficiently long time periods.

For each industry in a certain year, the CU index is the ratio of nominal output divided by

nominal capacity for a given industry-year. We cannot directly use the capacity index data from

FRB since it is not comparable between industries. We therefore calculate our capacity measure (Yc)

by dividing gross output (Y ) in the productivity dataset by CU. Because Y is already in millions

of 1987 dollars, Yc is also in millions of 1987 dollars. As the SIC capacity dataset contains both

two-digit and three-digit industries, we aggregate the productivity dataset to match the industries

in the capacity dataset. The result is a balanced panel of 39 industries across 13 years.

To control for sector-level heterogeneity, we generated sector dummy variables following Stiroh

(2002) and Cheng and Nault (2012): IT-producing industries are the industries with the first

two digits of SIC code being 35 (Industrial Machinery and Equipment) or 36 (Electronic and

other Electric Equipment); IT-using industries are the industries which are not IT-producing and

whose IT intensity (IT capital stock over gross output) is above the sample median of the non-IT

producing industries; the remaining industries are Others. This dataset yields 5 IT-producing, 16

IT-using, and 18 Others industries. Table A2 in the Appendix lists the 39 manufacturing industries

and their SIC codes.

1998-2013 Dataset: This more recent dataset is based on the 2007 North American Industry

Classification System (NAICS). We acquired data on capital stock, IT capital stock (Z), labor input

(L), intermediate input (M), and GDP (Y ) for 60 three-digit NAICS code industries from 1998
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to 2013, directly from the BEA and BLS websites. All value-based variables have been converted

to constant 2009 dollars using chain-type quantity indices provided by the BEA. IT capital is

the aggregate stock of software and information processing equipment - which includes computer

and peripheral equipment, communications, instruments, photocopy and related equipment, and

office and accounting equipment. Non-IT capital (K) is obtained by subtracting IT capital from

the total stock of private fixed assets. In this dataset, Labor is the number of total full-time

equivalent employees, which equals the number of employees on full-time schedules plus the number

of employees on part-time schedules converted to a full-time basis.

We collected NAICS-based CU data from the FRB website. The data are a mix of different digit

levels. The definition of CU is the same as in our earlier dataset. This NAICS-based CU dataset

covers 43 detailed industries in manufacturing, mining, and utilities. Because the CU data are

aggregated from the establishment level for each industry, they are not additive across industries.

Therefore, we aggregate the productivity dataset according to the levels of industries in the CU

dataset, and then match the two datasets. The result is a balanced panel of 22 industries (19 in

manufacturing, 3 in oil and gas and mining) across 16 years. As in our 1987-1999 dataset, we

then generate capacity, Yc. Unlike our 1987-1999 dataset, this dataset contains manufacturing and

also oil and gas and mining industries. We classify the industries into two sectors: manufacturing

(NAICS codes 31-33) and non-manufacturing, and create a sector dummy variable for the non-

manufacturing sector to control for any sector-level heterogeneity. Table A3 in the Appendix lists

the industries and their NAICS codes.

2.4. Econometric Adjustments

Heteroscedasticity and autocorrelation are the two econometric problems that commonly arise when

using cross-sectional time series data. As our industries differ in size, organization, management,

production technology, and response to economic shocks, we expect our datasets to exhibit industry-

level heteroscedasticity, possibly correlated across industries. We use a Breusch-Pagan / Cook-

Weisberg test to test for heteroscedasticity. We reject the null hypothesis of no heteroscedasticity
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in both datasets for the model of actual output (in (2), χ2 = 31.09 for our earlier dataset and 4.84

for our more recent dataset), for the model of capacity (in (5), χ2 = 81.90 for our earlier dataset

and 135.51 for our more recent dataset), and for the model of CU (in (6), χ2 = 4.77 for our earlier

dataset and 35.12 for our more recent dataset).

We also expect our datasets to exhibit first-order autocorrelation because with relatively smooth

business cycles one year’s output is highly correlated with the prior year. Using the Wooldridge test

for autocorrelation in a panel dataset, we rejected the null hypothesis of no first-order autocorrela-

tion (AR1) at reasonable levels of significance in both datasets for the model of actual output (in

(2), F-statistic=10.97 for our earlier dataset and 33.86 for our more recent dataset), for the model

of capacity (in (5), F-statistic=27.080 for our earlier dataset and 26.24 for our more recent dataset),

and for the model of CU (in (6), F-statistic=76.251 for our earlier dataset and 68.87 for our more

recent dataset). Moreover, if the response to changes in business cycles do not occur with the same

magnitude in each industry, then each industry may differ in its magnitude of autocorrelation and

the autocorrelation becomes industry-specific.

Given our test results, both panel-specific autocorrelation and panel-level heteroscedasticity are

suspected in both of our datasets. To adjust for these econometrically, we estimate our models using

specifications for heteroscedastic errors and industry-specific AR1 coefficients (He + PSAR1). To

generate our estimates, we use cross-sectional time series feasible generalized least-squares (FGLS)

regressions (Wooldridge 2002) implemented in Stata. Furthermore, we add year dummies to control

for potential economy-wide shocks, control for sector-specific heterogeneity by including sector

dummies (i.e., IT-producing and IT-using for our 1987-1999 dataset, and non-manufacturing for

our 1998-2013 dataset), and allowing for industry-specific autocorrelation. In addition, estimating

our capacity equation, (5), and our CU equation, (6), the industry dummy variables used to scale

up labor and intermediate inputs capture industry-level fixed effects to the degree that these effects

are related to labor and/or intermediate inputs. We do not include controls for correlated industry-

level heteroscedasticity as the number of industries is greater than the number of years in both of

our datasets. We use the system GMM estimation as a test to address this feature.
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It is worth pointing out that our estimation method allows each industry to have different scale

up factors for labor and for intermediates. Although these scaling up factors are multiplicative with

labor/intermediate inputs used to produce output, they are easily consistent with some non-linear

process as they result from the time series that contains a variety of levels of output and inputs.

3. Results
3.1. Main Results

Our main results for the two datasets are reported in Table 1 (output elasticities) and Table 2

(marginal products). For each dataset, there are three sets of results corresponding to the output

model in (2), the capacity model in (5), and the CU model in (6), respectively. The output results

are included for comparison. Recall that our interests are the impacts of IT capital and non-IT

capital, which are our primary focus throughout the results section.

Table 1       Main Results - Output Elasticities

Output Capacity CU Output Capacity CU

IT Capital 0.077 *** 0.133 *** 0.036 0.042 * 0.079 *** -0.042 **

(0.019) (0.024) (0.022) (0.022) (0.023) (0.020)

Non-IT Capital 0.101 *** 0.437 *** -0.634 *** 0.355 *** 0.450 *** -0.430 ***

(0.02) (0.061) (0.055) (0.065) (0.061) (0.049)

Labor 0.264 *** 0.175 **

(0.018) (0.022)

Intermediate 

Inputs
0.571 *** 0.410 ***

(0.024) (0.028)

Returns to Scale
1.013 0.982

N 507 507 507 352 352 352

 (PSHe) and panel-specific autocorrelation (PSAR1) for  both datasets

   ∗p<0.10, ∗∗p<0.05, ∗∗∗p<0.01. Standard errors in parentheses.

and interaction terms are suppressed for brevity. Control for panel-specific heteroskedasticity

1987-1999 1998-2013

Notes. Log dependent variable and input variables. Feasible Least Squares estimation.

IT-producing, IT-using, and the year dummies are included for the 1987 -1999 dataset.

Non-manufacturing and the year dummies are included for the 1998 -2013 dataset. Dummies
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Table 2      Main Results - Marginal Products

Output † Capacity † CU ‡ Output † Capacity † CU ‡

IT Capital 2.520 *** 5.220 *** 4.78% 2.261 * 5.611 *** -1.07% **

(0.622) (0.943) (0.029) (1.184) (1.633) (0.005)

Non-IT Capital 0.155 *** 0.819 *** -3.00% *** 0.731 *** 1.233 *** -0.45% ***

(0.031) (0.114) (0.003) (0.134) (0.167) (0.001)

N 507 507 507 352 352 352

   † Marginal products

   ‡ Marginal impact on industry-average CU per one billion dollar increase

   ∗p<0.10, ∗∗p<0.05, ∗∗∗p<0.01. Standard errors in parentheses.

1987-1999 1998-2013

Results on Output: Because of the aggregation necessary to match the productivity data with

the capacity data, we examine estimates from the simple CD form to ensure they are comparable

with prior IT productivity results that have used this form. Our estimates from the simple CD

regression on output in (2) are reported in Column 2 for our 1987-1999 dataset and Column 5 for

our 1998-2013 dataset in Table 1 (output elasticities) and Table 2 (marginal products). Our output

elasticity of IT capital for the 1998-2013 dataset is comparable in magnitude with previous findings

and significant at the 10% level; the output elasticity of labor is significant at the 5% level. The

rest of our output elasticities across the two datasets are significant at the 1% level and conform

roughly in magnitude to previous findings with industry-level data (for example, Table 4 in Cheng

and Nault 2007) even though prior studies differ in data sources, aggregation, and econometric

adjustments. Our measures of the returns to scale in Table 1 indicate roughly constant returns to

scale in both datasets.

Results on Capacity: The estimates from our model on capacity in (5) are presented in Column

3 for our 1987-1999 dataset and Column 6 for our 1998-2013 dataset in both Table 1 (output

elasticities) and Table 2 (marginal products).

From Table 1, the output elasticities of IT and non-IT capital in the capacity model, γc and

βc in (5), are both positive and significant at the 1% level in both datasets. Both of these output

elasticities are greater in magnitude than their corresponding estimates in the simple CD model in

(2): For IT capital the change is γc−γ = 0.056 in our earlier dataset and 0.037 in our more recent
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dataset); for non-IT capital the change is βc−β = 0.336 in our earlier dataset and 0.095 in our more

recent dataset. These changes indicate that despite the increase in labor and intermediate inputs,

both IT and non-IT capital contribute to the production boost when increasing from output to

capacity, and this reflects their increased value as constraints on capacity.

To answer our main question of whether IT capital or non-IT capital is a more valuable con-

tributor at the margin to capacity, we convert the elasticities to marginal products (MP). From

the capacity model results in Table 2, the MP for IT capital is much greater than that for non-IT

capital, and statistically significant in both the earlier and later datasets. In the earlier dataset the

MP for IT capital is 5.220 and for non-IT capital is 0.819, with χ2(1) = 16.40 for the Wald test

on the statistical difference. Similarly, in the more recent dataset the MP for IT capital is 5.611

and for non-IT capital is 1.233 with χ2(1) = 6.70. Specifically, a $1 million increase in IT capital is

associated with a $5.22 million increase in capacity for an average industry in the 1987-1999 dataset

and a $5.61 million increase in capacity in the 1998-2013 dataset. This indicates that a one dollar

investment in IT capital has a return multiple of 4-6 times that of non-IT capital when investing to

increase capacity. An alternative and equivalent interpretation is that the MPs are shadow prices

for capacity: MPs represent the dollar gains in capacity by relaxing the capital constraint by one

dollar. Our results show that relaxing the IT capital constraint yields a greater payoff for capacity

than relaxing non-IT capital.

The increase in MP going from the simple CD model to the capacity model is also much greater

for IT capital as compared to non-IT capital – approximately $3 for each dollar of investment in

IT capital as compared to less than one dollar for each dollar of investment in non-IT capital.

Thus, the high MPs for IT capital seen in many IT productivity studies when contributing to

actual output are magnified relative to non-IT capital when contributing to capacity. Given our

datasets, these results are very clear and have persisted for the last quarter century: IT capital

has a higher MP in expanding capacity than non-IT capital both in absolute terms and relative to

their contributions to actual output.
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As we will cover in more detail in the Discussion and Conclusions section, for the strategy of

holding excess capacity for entry deterrence or for cost-efficient short-term changes in output in

response to demand fluctuations, at the margin IT capital is by far the more effective investment

to increase capacity.

Results on CU: Columns 4 and 7 in Table 1 and Table 2 present the estimates for our model on

CU in (6).

Beginning with our more recent dataset, 1998-2013, we find that the impact of additional invest-

ment in either IT capital or non-IT capital significantly decreases CU: at the 5% level for IT

capital and at the 1% level for non-IT capital. When converted to MPs in Table 2 we see that

these impacts can be substantial, and are twice as large for investments in IT capital as compared

to those in non-IT capital: 1.07% decrease in CU as compared to a 0.45% decrease in CU for one

billion dollars of additional capital investment. Thus, IT capital and non-IT capital both reduce

the short-run CU rate because their effects on capacity outweigh those on output, and more so for

IT capital.

In the earlier dataset, 1987-1999, the results for non-IT capital are consistent in sign with the

more recent dataset and magnified: non-IT capital is negative and significant at the 1% level, and

the impact of non-IT capital on CU is large: −3.00% in Table 2. This difference in magnitude

between the two datasets may be explained by the earlier dataset having more finely defined

industries, although there is no way to test this. In contrast, for the earlier dataset, 1987-1999, the

results for IT capital are insignificant, that is, IT capital did not have a significant impact on CU.

To explore this insignificant result further, we spilt the earlier dataset based on pre- and post-

Internet periods, 1987-1994 and 1995-1999, respectively, as was done in Gong et al. (2016). As we

know, Internet significantly lowered the internal and external coordination costs of the firm and

increased transparency for suppliers and customers. According to Hobbes’ Internet Timeline 10.2

(Zakon 2011), business and media started to notice the Internet in 1994. The Internet was com-

mercialized in 1995 when NSFNET (National Science Foundation Network) was decommissioned,
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removing the last restrictions on the use of the Internet to carry commercial traffic (Leiner et al.

1997). In addition, enterprise software applications also became popular in mid-1990s, coinciding

with our timing of the Internet-based split (McAfee and Brynjolfsson, 2008). We expect significant

a difference between the two sample splits in ways IT could contribute to capacity and CU because

of the economies of scale of the Internet and enterprise software applications. Our tests for the two

sub-periods suggest the presence of heteroscedasticity (He) for all three models in each sub-period,

panel-specific autocorrelation (PSAR1) for the models of output and CU in the pre-Internet period

and for the model of output in the post-Internet period, and common autocorrelation (AR1) for

the rest of the models in each sub-period. We control for the same sector and year fixed effects as

for the pooled dataset.

The results are in Tables 3 and 4. For non-IT capital the results on CU are consistent in sign and

magnitude with those results from the full earlier dataset: non-IT capital is negative and significant

at the 1% level, and the MP on CU is roughly −3.00%. In contrast, the impact of IT capital on

CU is significant both pre- and post-Internet, 1% level and 5% level, respectively, and positive -

declining substantially in MP terms from 17.36% to 7.00%. Even though higher levels of IT capital

increases CU throughout the 1987-1999 period, we suspect that the large decline in MP and in

significance between pre- and post-Internet is evidence of a regime change, and consequently why

the impact of IT capital on CU was not significant in the full earlier dataset. We note that the

impact of IT capital on capacity in the pre-Internet period is not significant, although it is in the

post-Internet period. We return to this in the Discussion and Conclusion section.

3.2. Robustness Checks and Alternative Specifications

Although our two datasets differ in time span, set of industries, level of aggregation, and definition

for IT capital, our main qualitative findings on capacity are consistent and on CU are mostly

consistent across the two datasets and sample splits. To further check the robustness/validity of

our results, we performed a substantial set of tests and analyses, and our main qualitative results

stay unchanged. Specifically, we use fixed effects estimation to control for industry-level effects
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Table 3      Results for Pre- and Post-Internet periods - Output Elasticities

Output † Capacity ‡ CU † Output † Capacity ‡ CU ‡

IT Capital 0.133 *** 0.014 0.112 *** 0.238 *** 0.095 ** 0.074 **

(0.013) (0.023) (0.026) (0.019) (0.042) (0.032)

Non-IT Capital 0.037 *** 0.239 *** -0.661 *** 0.048 *** 1.205 *** -0.707 ***

(0.011) (0.072) (0.071) (0.017) (0.098) (0.074)

Labor 0.193 *** 0.173 ***

(0.01) (0.015)

Intermediate 

Inputs
0.627 *** 0.531 ***

(0.018) (0.031)

N 312 312 312 195 195 195

Notes.  Log dependent variable and input variables. Feasible Least Squares estimation, control for 

IT-producing, IT-using, and the year dummies. Dummies and interaction terms are suppressed for

 brevity.

   ∗p<0.10, ∗∗p<0.05, ∗∗∗p<0.01. Standard errors in parentheses.

   † control for panel-specific heteroskedasticity (PSHe) and panel-specific autocorrelation (PSAR1)

   ‡ control for panel-specific heteroskedasticity (PSHe) and common autocorrelation (AR1)

1987-1994 1995-1999

Table 4      Results for Pre- and Post-Internet periods - Marginal Products

Output † Capacity ‡ CU † Output † Capacity ‡ CU ‡

IT Capital 4.959 *** 0.628 17.36% *** 6.064 *** 2.887 ** 7.00% **

(0.485) (1.031) (4.03) (0.484) (1.276) (3.027)

Non-IT Capital 0.051 *** 0.401 *** -3.00% *** 0.086 *** 2.631 *** -2.83% ***

(0.015) (0.121) (0.322) (0.031) (0.214) (0.296)

N 312 312 312 195 195 195

   † Marginal products

   ‡ Marginal impact on industry-average CU per one billion dollar increase

   ∗p<0.10, ∗∗p<0.05, ∗∗∗p<0.01. Standard errors in parentheses.

1987-1994 1995-1999

that do not vary over time, and 2-stage least squares estimation (2SLS) as well as system-GMM

estimation to deal with potential endogeneity.

Without controlling for industry-level fixed-effects, there may be long-run differences in output

and capacity that are likely to be correlated with IT capital and non-IT capital. We note that our

capacity and CU equations, (5) and (6), include industry dummy variables as part of the scale-up

such that if these long-run differences are related to labor or intermediate inputs they are controlled

for in the capacity and CU regressions. Moreover, sector-level fixed effects are included in all our

regressions we report in our main results as described in our Econometric Adjustments above.
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Nonetheless, in order to determine if there are industry-level differences that are not accounted

for in our main results, we incorporate industry-level dummy variables in our FGLS estimation

separate from our scale up of labor and intermediate inputs, dropping the sector-level fixed effects.

We find that all of our qualitative results remain unchanged. In fact, the effects of IT capital are

quantitatively consistent with the main results from our original FGLS estimation (i.e., without

fixed effects) in terms of significance and magnitude. Non-IT capital is not significant in the output

model in the earlier dataset. This is likely due to multicollinearity and the loss of degrees of

freedom (Yaffee 2003; Han, Kauffman and Nault 2011). Historically, fixed-effects estimation has

led to disappointing results with insignificant capital coefficients and implausibly low returns to

scale (Griliches and Mairesse 1998, Stiroh 2010, Cheng and Nault 2012). Of course, we expect some

level of multicollinearity in a production function estimation. However, the production function is

a theoretical construct: output is a function of inputs. Therefore, one cannot throw out collinear

variables such as labor or capital, and multicollinearity only affects the efficiency of the estimates.

Prior literature suggests that FGLS may underestimate the standard errors of the estimated

coefficients, and that OLS with panel-corrected standard errors (OLS-PCSE) may perform better

in estimating the standard errors (Beck and Katz 1995). As an additional robustness check, we

estimate our models with OLS-PCSE, correcting for panel-level heteroskedasticity and autocor-

relation. Our results remain highly consistent with our fixed-effects-based results. Results from

fixed-effects and OLS-PCSE estimations for both datasets are provided in Tables 5 and 6.

3.2.1. Endogeneity Endogeneity of the independent variables arises from three sources:

simultaneity, omitted variables, and measurement error (Wooldridge 2002). Simultaneity arises

when one or more of the independent variables are determined with the dependent variable and are

subject to shocks that affect both. In our context, this could happen when firms observe demand

shocks in the market (not observable to researchers), and they choose output and input levels

accordingly. Moreover, if these are productivity shocks (e.g., a new technology breakthrough) they

could affect output, inputs and capacity, and could be correlated over time.
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IT Capital
0.077***

(0.019)

0.075***

(0.024)

0.089**

(0.034)

Non-IT Capital
0.101 ***

(0.02)

0.024

(0.048)

0.137**

(0.065)

IT Capital
0.133***

(0.024)

0.123***

(0.026)

0.151***

(0.035)

Non-IT Capital
0.437***

(0.061)

0.385***

(0.067)

0.430***

(0.104)

IT Capital
0.036

(0.022)

0.009

(0.024)

0.012

(0.029)

Non-IT Capital
-0.634***

(0.055)

-0.459***

(0.056)

-0.576***

(0.073)

IT Capital
0.042*

(0.022)

0.107***

(0.029)

0.065*

(0.038)

Non-IT Capital
0.355***

(0.065)

0.291***

(0.051)

0.295***

(0.052)

IT Capital
0.079***

(0.023)

0.099**

(0.043)

0.094**

(0.039)

Non-IT Capital
0.450***

(0.061)

0.406***

(0.081)

0.465***

(0.144)

IT Capital
-0.042**

(0.020)

-0.071**

(0.035)

-0.049*

(0.027)

Non-IT Capital
-0.430***

(0.049)

-0.541***

(0.067)

-0.526***

(0.083)

OLS-PCSE estimates are corrected for panel-level heteroskedasticity and autocorrelation.

Table 5    Alternative Econometric Specifications for the Main Datasets - Output Elasticities

Sample Periods Model Coefficients Main Results Fixed Effects OLS-PCSE

Notes. Log dependent variable and input variables.

   ∗p<0.10, ∗∗p<0.05, ∗∗∗p<0.01. Standard errors in parentheses.

1987 - 1999

Output 

Capacity

CU

1998 - 2013

Output 

 Capacity

CU

To the extent that different industries have distinct yet time-invariant responses to the demand

or productivity shocks, we have shown that simultaneity is not an issue in our models by generating

largely consistent results using industry-level fixed-effects estimation. Furthermore, if the industries

respond to the demand or productivity shocks similarly within a time interval (i.e., industry-

invariant), we mitigate simultaneity by incorporating year fixed effects in our models assuming that

industries’ responses are consistent within the same year but different across years. What is more,

in our main results we use sector fixed effects to replace industry fixed effects in order to mitigate

simultaneity that results when industries that belong to the same sector have similar responses to

demand shocks that determine the level of output before the inputs. As we can see from our tables

using the alternative econometric specifications (Tables 5 and 6) the results are consistent using

these specifications.
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IT Capital
2.51***

(0.619)

2.445***

(0.782)

2.900**

(1.108)

Non-IT Capital
0.156***

(0.031)

0.037

(0.074)

0.211**

(0.100)

IT Capital
5.224***

(0.943)

4.831***

(1.021)

5.931***

(1.374)

Non-IT Capital
0.817***

(0.114)

0.72***

(0.125)

0.804***

(0.194)

IT Capital
4.788%

(2.926)

1.197%

(3.192)

1.596%

(3.857)

Non-IT Capital
-2.999%***

(0.26)

-2.171%***

(0.265)

-2.725%***

(0.345)

IT Capital
2.61*

(1.184)

5.761***

(1.56)

3.500*

(2.046)

Non-IT Capital
0.731***

(0.134)

0.599***

(0.11)

0.608***

(0.107)

IT Capital
5.611***

(1.633)

7.031**

(3.05)

6.676**

(2.769)

Non-IT Capital
1.233***

(0.167)

1.112***

(0.22)

1.274***

(0.394)

IT Capital
-1.07% **

(0.005)

-1.85%**

(0.011)

-1.27%*

(0.007)

Non-IT Capital
-0.45%***

(0.001)

-0.56%***

(0.001)

-0.55%

(0.001)

Notes. Log dependent variable and input variables.

   ∗p<0.10, ∗∗p<0.05, ∗∗∗p<0.01. Standard errors in parentheses.

1987 - 1999

Output 

Capacity

CU

1998 - 2013

Output 

 Capacity

CU

Table 6    Alternative Econometric Specifications for the Main Datasets - Marginal Products

Sample Periods Model Coefficients Main Results Fixed Effects OLS-PCSE

Even though we have mitigated the simultaneity concern by using fixed effects models, our results

still face the threat of simultaneity because of time- and industry- variant responses to demand

shocks. In addition, there may be measurement errors and omitted variables that might affect

both the output and the inputs. Any variables that are not included in the model and that may

cause a productivity shock (e.g., droughts, change in exchange rate, fluctuations in inflation rate,

structural change or disruptive technology in an industry) may result in endogeneity. Moreover,

these productivity shocks may be correlated over time, in which case lagged inputs as instruments

might be invalid.

We recognize at the outset that to the extent that these omitted variables are serially correlated,

our adjustments with panel-specific/common autocorrelation help relieve this problem. To more

fully address this issue, we conduct two-stage least squares (2SLS) estimation, using one-year
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lags of the four input variables and their interactions with the industry dummies as excluded

instruments. For IT capital in particular, we also use the two-year lag as an excluded instrument.

All our qualitative results remain unchanged, except that IT capital now has a negative and

significant association with CU in the earlier dataset. The average F-statistic from the first stage is

1243.61 (Prob > F = 0.00), rejecting the null hypothesis that the excluded instruments are weakly

associated with the endogenous variables. The 2SLS results are presented in Table A4 in our

Appendix.

A precondition for 2SLS estimation is that our instrumental variables are indeed exogenous. That

is, they are not correlated with the error terms in our models. The canonical test for instrument

exogeneity in over-identified models is the Sargan Test (Sargan 1958). We conducted Sargan tests

for all our models in the two datasets and sample splits. The results are summarized in Table

A5 in our Appendix. All of the test results indicate that we cannot reject the null hypothesis

that our instrumental variables are exogenous. In fact, lagged input variables have been accepted

as valid instrumental variables in industry-level production function contexts in prior research

(e.g., Mittal and Nault 2009; Han et al. 2011; Cheng and Nault 2012). Finding other appropriate

instruments is challenging. Stiroh (2010) compared the lagged independent variables with demand

side instruments such as oil prices and defense spending shocks, and concluded that the approach

with the best performance is a system GMM estimator (Blundell and Bond 1998).

One of the most important assumptions of the system GMM is that the number of time periods

is smaller than the number of panels. This is exactly what we have in our datasets where we

have 39 industries and 13 years in our first dataset; and 22 industries and 16 years in the second

dataset. Another crucial assumption of system GMM is that the estimators are designed for general

purpose so they assume the only available instruments are internal, which are based on lags of

the instrumented variables (Roodman 2009). In our analysis we have taken advantage of this

feature and have used lags of our independent variables as IVs. The GMM estimators also consider

the potential fixed effects and problems with the error structures such as heterosketasticity and
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autocorrelation. This again fits our data well because we have detected both heterosketasticity and

autocorrelation. We adopt the system GMM estimator in our models across both datasets, and

find that the results are highly consistent from our main results based on FGLS. The results are

presented in Table 7 below that can be compared with our earlier Tables 1 and 2.

IT Capital 0.354 *** 0.176 *** 0.026 0.118 *** 0.112 *** -0.043 **

(0.01) (0.025) (0.02) (0.015) (0.027) (0.021)

Non-IT 

Capital 0.007 * 0.332 *** -0.579 *** 0.228 *** 0.375 *** -0.513 ***

(0.004) (0.068) (0.055) (0.029) (0.063) (0.049)

IT Capital 11.529 *** 6.905 *** 3.42% 6.353 *** 7.954 *** -1.12% **

(0.337) (0.985) (2.715) (0.808) (1.917) (0.005)

Non-IT 

Capital 0.011 * 0.620 *** -2.74% *** 0.470 *** 1.028 *** -0.53% ***

(0.006) (0.127) (0.261) (0.059) (0.172) (0.001)

Notes.  Log dependent variable and input variables.

∗p<0.10, ∗∗p<0.05, ∗∗∗p<0.01. Standard errors in parentheses.

Table 7      Results for the System GMM Estimation

Output Elasticities

Marginal Products

1987-1999 1998-2013

Output Capacity CU Output Capacity CU

As capacity and CU levels may be related to the competitiveness of an industry which may

also determine the input levels, we have downloaded the industry concentration data from the

Census Bureau, and merged it with our main dataset. We re-ran all our analyses with industry

concentration as an additional control variable, and all of our main findings remain qualitatively

the same. The results from these analyses are available from the authors. To further verify that

our results are not driven by the correlation between the independent variables and the error term,

we investigate the correlations between the residuals and our independent variables. We find that

the correlations are consistently low and not significant as we show in Table A6 in our Appendix.
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4. Discussion and Conclusion

Adopting the FRB’s definition of productive capacity, we examine how IT and non-IT capital

constrain the short-run production expansion from actual output to sustainable maximum output,

that is, capacity. We find first that IT capital has a significant contribution to capacity, and it

is substantially different in magnitude compared with its contribution to output. This provides

empirical evidence that IT, as the emerging general-purpose technology, has a substantial impact

on capacity besides its well-documented impact on output. Second, and more importantly, when

examining the impact on capacity we find that IT capital has a greater MP than non-IT capital.

This is consistent with our results and other results in the related literature for actual output.

Because both types of capital are fixed in the short-run, they are constraints on capacity. Therefore,

the MPs represent the shadow prices of the two types of capital, and our results imply that investing

in IT to relax the IT capital constraint yields a greater increase in capacity than investing in non-IT

capital.

Over the 27 years covered by our two datasets IT’s role has changed from automation and

substitution towards enabling organizational changes and making labor and non-IT capital more

productive (Brynjolfsson and Hitt 2003, Mittal and Nault 2009). Thus, IT capital’s contribution

to capacity gradually outweighs that to output as this transition of role deepens over time.

Our results also show that additional non-IT capital helps to reduce CU. More importantly, IT

capital also does so in the more recent dataset (1998-2013), and to even a greater degree that non-IT

capital, consistent with our capacity results. However, IT capital does not have a significant effect

on CU in the earlier dataset (1987-1999). Dividing the earlier dataset into pre-and post-Internet

periods, we find that non-IT capital continues to reduce CU, and in contrast IT capital increases

CU in both sub-periods, although substantially more pre-Internet. We suspect this decline in IT

capital’s impact on CU in the post-Internet period is evidence of a regime change as well as the lack

of software in the measure of IT capital in the earlier dataset. These pre-2000 results are consistent

with other studies we cite that examine the effect of IT on CU through specific examples mostly
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pre-2000 (Koltai and Stecke 2008, Barua et al. 1995, Nightingale et al 2003, and Hubbard 2003).

In contrast, Bansak et al. (2007) find small increases in CU from IT from 1974-2000 on a subset of

manufacturing industries, perhaps due to the selection of industries and the many changes in IT

from pre-personal computer to post-Internet over that period.

Contributions and Implications: The objective of this work has been to examine the potential

of IT capital, relative to non-IT capital, to contribute to a strategy of holding excess capacity

in the short-run. This excess capacity can be used to deter entry and/or respond to short-term

fluctuations in demand cost-efficiently. In our production theory-based analysis, investments in IT

and non-IT capital are both long-run decisions. Once the capital in place is fixed, the maximum

amount of variable inputs (i.e., labor and intermediate inputs) that can be used for production and

sustainable maximum output (i.e., capacity) is determined. However, quasi-fixed inputs determine

not only capacity but minimum efficient scale – the lowest level of output where average costs are

minimized – is also determined. Consequently, our results on capacity whereby IT capital has a

positive impact on capacity and a higher MP than non-IT capital strongly suggests IT capital is

more effective in increasing capacity. This makes IT capital a more effective investment to increase

capacity in order to deter entry and to manage demand uncertainty.

In addition, the results with our more recent dataset show that IT capital reduces CU – in

contrast with most other studies that examine a single IT application or group of applications.

Taken together with these other studies, and consistent with Bansak et al. (2007), IT increases

both efficiency and capacity where the latter is a larger effect. Indeed, this provides more evidence

that the impacts of IT go beyond individual applications and extend to organization and business

processes, enhancing the productivity of other inputs, and various spillovers of value. This further

supports the argument that IT capital is more valuable for a strategy of holding excess capacity.

More broadly, CU has long been a policy-related variable because of its relationship to demand

pressure, and its consequent predictive power for inflation, unemployment, etc. The impact of IT

capital on productivity has often been touted as a reason for relatively low inflation since the mid-

1990s. Most results that support this conjecture come from the relatively large impact of IT capital
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on output. Although we do not examine this directly, we provide a possible alternative explanation

whereby it has been the relatively larger impact of IT capital on capacity than on output, and

the reduction of CU that has reduced demand pressure in industries and hence inflation in the

economy.

Limitations and Future Research: Our first limitation is that our analysis is done at the industry

level. Industry-level analyses are more likely to suffer from aggregation error in measurement than

firm-level analyses, although such aggregation errors in measurement also exist when moving from

product level to firm level. Despite the fact that our industry-level datasets are at different levels

of aggregation and with different measures of IT capital, that we still obtain consistent results

mitigates the chance that our results are driven by aggregation errors versus real effects between

IT and capacity. Moreover, as an industry-level production function can be understood as the

production function of an average firm in the industry, our results can be interpreted at the firm-

level (Aigner and Chu 1968). Although the majority of IS studies are conducted at the firm level,

prior research has indicated that information systems research at the industry level not only is

necessary but also has significant importance to improving both information systems theories and

their practical relevance (Chiasson and Davidson 2005, Ren and Dewan 2015).

Another limitation is that we have a small sample size and relatively large numbers of parameters

especially in the model of capacity and CU. This may affect the power of our analysis. However, the

fact that we consistently obtain significance for our main results despite the relatively small sample

size makes our findings even more convincing. In addition, our IT capital measure in the earlier

dataset does not contain software, which underestimates IT capital in that dataset. We realize

that the inclusion of software in IT in our earlier dataset could make IT capital more significant.

We also realize that some granularity is lost in not having disaggregated measures of IT. On the

other hand, many types of IT are complements in production, such as hardware and software, and

examining them in isolation may not capture their full effect.

We recognize that there is much to learn about how IT capital affects capacity and CU dif-

ferentially among industries and applications, and how IT capital impacts capacity as compared
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with non-IT capital. As mentioned in the Introduction, IT has been found to have a myriad of

effects on CU. It would be interesting for future research to explore IT’s heterogeneous impact on

CU across different types of industries. Following our contributions based on industry-level data,

important contributions are possible in understanding why IT capital has different and relatively

larger effects than non-IT capital, and what drives these effects. Future research should also take

into consideration that the scale-up of labor and intermediate inputs for a particular industry may

be time-varying.
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6. Appendix

Table A1    Summary Statistics

Variable Mean Std. Dev. Min Max

Dataset I (1987-1999)

Output (in millions of 1987 dollars) 63714.56 75386.87 2926.97 738130.80

Intermediate inputs (in millions of 1987 dollars) 36670.75 43113.01 1425.65 245896.60

Labor (in millions of hours) 913.60 899.73 27.10 3599.50

Non-IT capital stock (in millions of 1987 dollars) 43662.16 42219.60 3877.70 202606.40

IT capital stock (in millions of 1987 dollars) 3979.03 5086.10 82.60 29408.60

Capacity utilization (in percentage*100) 83.28 7.00 55.34 98.98

Capacity (in millions of 1987 dollars) 77834.01 92029.29 3078.72 885654.20

Dataset II (1998-2013)

Output (in millions of 2009 dollars) 277205.10 284703.00 30286.68 1501812.00

Intermediate inputs (in millions of 2009 dollars) 151846.50 135729.20 4132.50 546358.30

Labor (in thousands of full-time equivalent employees) 660.49 438.77 109.00 1807.00

Non-IT capital stock (in millions of 2009 dollars) 188455.80 248737.20 12908.95 1260947.00

IT capital stock (in millions of 2009 dollars) 8483.67 14011.04 630.00 84878.00

Capacity utilization (percentage*100) 76.34 8.60 43.59 96.92

Capacity (in millions of 2009 dollars) 363035.10 377640.40 39162.56 1931607.00

Notes.   Dataset I has 507 observations; Dataset II has 352 observations.
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Table A2    1987 - 1999 Dataset  - Three-Digit SIC Industry Description

 1987 SIC Code Industry Description

20 Food and kindred products

21 Tobacco products

221-4 Broadwoven fabric mills, cotton, wool, silk, and manmade fiber

225-7,9
Knitting mills, carpets and rugs, dyeing, 

finishing and miscellaneous textile goods

228 Yarn and thread mills

23
Apparel and other finished products made from fabrics 

and similar material

243-5,9

Millwork, plywood, and structural members,

Wood containers and misc. wood products,

Wood buildings and mobile homes

25 Furniture and fixtures

261 Pulp mills

262 Paper mills

263 Paperboard mills

265,7
Paperboard containers and boxes

Converted paper products except containers

27 Printing, publishing, and allied industries

281 Industrial inorganic chemicals

282 Plastics materials and synthetics

283-5,9
Drugs, soap, cleaners, and toilet goods, Paints and allied products,

Miscellaneous chemical products

286 Industrial organic chemicals

287 Agricultural chemicals

29 Petroleum refining and related industries

301 Tires and inner tubes

302,5,6 Rubber products, plastic hose and footwear

308 Miscellaneous plastics products, nec

31 Leather and leather products

321-3 Glass and glass products

324 Hydraulic cement

325-9

Stone, clay, and misc mineral products,

Concrete, gypsum, and plaster products

331,2

Blast furnaces and basic steel products;

Iron and steel foundries

34

Fabricated metal products, except machinery 

and transportation equipment

351-3

Engines and turbines, Farm and garden machinery;

Construction and related machinery



Zhang, Nault and Wei: The Strategic Value of IT in Setting Productive Capacity
43

354-6,8,9

Metalworking machinery and equipment; 

Special industry machinery;

General industrial machinery and equipment;

Refrigeration and service industry machinery;

Industrial machinery nec.

357 Computer and office equipment

 363,5 Household appliances, Household audio and video equipment

366 Communication equipment

371 Motor vehicles and equipment

372 Aircraft and parts

373 Ship and boat building and repairing

374-6,9 Railroad equipment, motorcycles, bicycles, 

Guided missiles and space vehicles, Miscellaneous Trans. Equipment

38

Measuring, analyzing and controlling instruments; 

photographic, medical and optical goods; watches and clocks

39 Misc. manufacturing industries

Table A3    1998–2013 Dataset - Three-Digit NAICS Industry Description

2007 NAICS Code Industry Title

211 Oil and Gas Extraction

212 Mining (except Oil and Gas)

213 Support Activities for Mining

22 Utilities

311,312 (311FT ) Food and beverage and tobacco products

313,314 (313TT) Textile mills and textile product mills

315,316 (315AL ) Apparel and leather and allied products

321 Wood products

322 Paper products

323 Printing and related support activities

324 Petroleum and coal products

325 Chemical products

326 Plastics and rubber products

327 Nonmetallic mineral products

331 Primary metals

332 Fabricated metal products

333 Machinery

334 Computer and electronic products

335 Electrical equipment, appliances, and components

336 Transportation Equipment

337 Furniture and related products

339 Miscellaneous manufacturing
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IT Capital 0.206 *** 0.211 *** -0.037 ** 0.154 *** 0.181 *** -0.020 **

(0.019) (0.022) (0.016) (0.021) (0.041) (0.011)

Non-IT 

Capital
0.032 *** 0.348 *** -0.500 *** 0.096 *** 0.454 *** -0.391 ***

(0.013) (0.095) (0.069) (0.035) (0.136) (0.085)

IT Capital 6.713 *** 8.269 *** -4.92% ** 8.291 *** 12.855 *** -0.52% **

(0.619) (0.857) (2.111) (1.131) (2.912) (0.003)

Non-IT 

Capital
0.049 *** 0.651 *** -2.36% *** 0.198 *** 1.244 *** -0.41% ***

(0.02) (0.179) (0.329) (0.072) (0.373) (0.001)

Notes.  Log dependent variable and input variables.

∗p<0.10, ∗∗p<0.05, ∗∗∗p<0.01. Standard errors in parentheses.

Table A4    Results for 2SLS Estimation   

CU

1987-1999 1998-2013

Marginal Products

Output Elasticities

Output Capacity CU Output Capacity

Table A5    Results for the Sargan Tests

Output Capacity CU

1987 - 1999 0.484 0.565 0.114

1998 - 2013 0.181 0.282 0.291

Notes. The numbers are p-values of the Sargan tests.

∗p<0.10, ∗∗p<0.05, ∗∗∗p<0.01.

Output Capacity CU Output Capacity CU

IT Capital 0.129 -0.088 -0.008 0.067 0.030 0.107

Non-IT Capital -0.036 -0.036 -0.001 0.066 0.172 0.069

Labor -0.063 -0.035 -0.022 0.163 -0.155 0.041

Intermediate Inputs 0.056 -0.031 -0.026 0.196 0.185 0.067

Table A6    Correlations between the Residuals and the Independent Variables

1987 - 1999 1998-2013


