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We balance trade-offs between two fundamental and possibly inconsistent objectives, minimization of max-

imum completion time and minimization of total completion time, in scheduling serial processes. We use a

novel approach of current and future deviations (CFD) to model the trade-offs between the two completion

times. We also use weights α and β to balance trade-offs at the operation level and at the process level,

respectively. Accordingly, we develop a constructive CFD heuristic, and compare its performance with three

leading constructive heuristics in scheduling based on three separate datasets: 5400 small-scale instances, 120

Taillard’s benchmark instances, and one-year historical records of operating room scheduling in a university

hospital system. We show that minimization of maximum completion time and minimization of total com-

pletion time yield inconsistent scheduling sequences, and the two sequences are relatively uncorrelated. We

also show that our CFD heuristic can balance trade-offs between these two objectives, outperform the three

leading heuristics across different performance measures, and allow larger variations on two fundamental

completion times. This means that trade-off balancing by our CFD heuristic enables a serial process to have

a larger tolerance on variations of process performance, and keeps the process better under control. This

performance improvement can be significant for flow shop scheduling in manufacturing in trading-off pro-

duction and holding costs, and for operating room scheduling across the perioperative process in healthcare

in trading-off hospital cost and patient waiting time.
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1. Introduction

A serial process consists of a number of stages, workstations, machines, and/or operations

that process jobs sequentially from the first to the last (Pinedo 2008). Typical examples of

serial processes are a flow line with m machines for production scheduling in manufacturing
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systems, and a 3-stage perioperative (periop) process for operating room (OR) scheduling

in healthcare systems, with preoperative (preop), intraoperative (intraop), and postopera-

tive (postop) stages (Ye et al. 2017, Gupta and Denton 2008). Maximum completion time

(Cmax) and total completion time (
∑
Cj) are two fundamental performance measures in

serial processes. Given an n-job m-machine instance, Cmax =Cn,m is the completion time

of the last job n on the last machine m, and
∑
Cj =

∑n
j=1Cj,m is the sum of completion

times of all j = 1, ..., n jobs on the last machine m. Flow time or average completion time

(C) equals
∑
Cj/n, and thus for a fixed n, min(

∑
Cj) is the same as min(C).

Minimizations of these two completion times, min(Cmax) and min(
∑
Cj), drive many

other performance metrics. For example, in production scheduling, utilization (Util) equals

to the workload divided by a working period, where the workload is the sum of processing

times and the working period is the difference between maximum completion time and

start time. Given due dates of all jobs, dj for j = 1, ..., n, tardiness is defined as Tj =

max{Cj − dj; 0}, and earliness is defined as Ej = max{dj −Cj; 0} in T’kindt and Billaut

(2002). Accordingly, maximum tardiness (max(Tj)) or maximum earliness (max(Ej)) may

relate to Cmax, and total tardiness (
∑
Tj) or total earliness (

∑
Ej) may relate to

∑
Cj

(Slowinski 1981, Kim 1995, Figueira et al. 2010). Work-in-process (WIP ) inventory levels

are influenced by the difference of average completion times between two adjacent machines

or stages. In OR scheduling, overtime is evaluated by the difference between maximum

completion time and OR block time; cost to the hospital can be a function of utilization of

the periop process; and length of stay (LoS) across the periop process and post-anesthesia

care unit (PACU) staffing are related to patient flow time (PtF ).

Although Cmax is included in
∑
Cj, it is difficult to seek optimal solutions to min(Cmax)

and to min(
∑
Cj) because they areNP -complete problems for scheduling in a serial process

with m> 2 (Garey et al. 1976, Hoogeveen and Kawaguchi 1999). In practice, heuristics

and simple priority dispatching rules (PDRs) are used to achieve simple objectives and to

seek near optimal solutions to real scheduling problems. For example, in OR scheduling,

the shortest processing time (SPT) rule is recommended to smooth patient flow across the

periop process, even over a genetic algorithm (Gul et al. 2011), and the longest processing

time (LPT) rule is recommended to improve OR utilization (Magerlein and Martin 1978).

In flow shop production scheduling, the NEH heuristic (Nawaz et al. 1983) is commonly

regarded as the best constructive heuristic in the world to min(Cmax), based on which
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heuristics are developed to improve utilization and to reduce CO2 emission (Gahm et al.

2016, Fang et al. 2011, Ding et al. 2016). In contrast, the LR heuristic (Liu and Reeves 2001)

and the FF heuristic (Fernandez-Viagas and Framinan 2015) are regarded as two of the

best constructive heuristics to min(
∑
Cj). However, two questions are left for operations

management, given the inconsistency between min(Cmax) and min(
∑
Cj) (Li et al. 2014).

One question is whether near optimal solutions to simple objectives can balance the trade-

offs (TO) between metrics based on Cmax and metrics based on
∑
Cj, and the other is

whether the process is better under control if operations management focus on trade-off

balancing instead on optimizing single objectives.

In this work, we develop and test a new heuristic that we name the current and future

deviation (CFD) heuristic for sequencing/scheduling in a serial process with m machines

or stages. The development of our CFD heuristic combines two underlying ideas. First,

we use one set of weights to address two coupled deviations generated by one completion

time from both upper and lower bounds as fundamental elements of the heuristic. Second,

we employ another set of weights to balance trade-offs between results from two well-

understood objectives: min(Cmax) and min(
∑
Cj). Following the traditional notation in

flow shop scheduling (T’kindt and Billaut 2002), we deal with a bi-criteria scheduling

problem for an m-machine permutation (prmu) flow shop with a linear function (Fl) of

two scheduling objectives of Cmax and
∑
Cj, F |prmu|Fl(Cmax,

∑
Cj).

Two objectives of min(Cmax) and min(
∑
Cj) are inconsistent with each other (Li et al.

2014), which means one completion time of a job j on a machine i, Cj,i, may minimize the

deviation to one objective, but maximize the deviation to the other. Consequently in our

CFD heuristic, we first factorize the two coupled deviations, and use weights α to construct

an initial sequence. We then explicitly recognize the inconsistency between the results of

min(Cmax) and min(
∑
Cj), and use weights β in a linear trade-off function to reconstruct

the initial sequence. Although both α and β are weights and can change separately, α is

applied to fundamental elements of two coupled deviations at the operation level, and β is

applied to performance at the process level. Through case studies in Section 4, preferences

for trade-off balancing should be consistent at the both levels, which means α= β.

Three separate datasets are used to test the performance of our CFD heuristic. The first

dataset consists of randomly generated small-scale instances where optimal sequences can

be found for min(Cmax), min(
∑
Cj) and min(TO). The second dataset is classic Taillard’s
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benchmarks for flow shop scheduling (Taillard 1993). The third dataset consists historical

records of nearly 30,000 patient cases from 2013-14 in OR scheduling across the three-stage

periop process at University of Kentucky HealthCare (UKHC). Compared to NEH, LR and

FF, we find that our CFD heuristic clearly outperforms all on min(Cmax), min(
∑
Cj) and

min(TO) for the dataset of small-scale instances, outperforms them for Taillard’s bench-

marks on min(Cmax) and min(TO), but marginally on min(
∑
Cj) especially compared to

FF, and dominates all for our UKHC dataset. In addition, using process control metrics

we show that our CFD heuristic yields a process that is better under control than the

historical data from UKHC. Finally, we compute Spearman rank order correlations among

the sequences for min(Cmax), min(
∑
Cj) and min(TO) for each dataset, finding that they

are close to zero and empirically support the inconsistency between each pair of objectives.

Thus, our three main contributions are first developing a novel CFD heuristic that

uses decoupled deviations from bounds and allows for trade-offs between objectives like

min(Cmax) and min(
∑
Cj), second showing that the CFD heuristic outperforms three lead-

ing alternative constructive heuristics based on a series of empirical tests across generated,

benchmark, and real historical datasets, and third keeping serial processes better under

control based on trade-off balancing.

The rest of this paper is organized as follows. A brief literature review is provided in

Section 2, the programming logic and steps of our CFD heuristic are illustrated in Section

3, results of empirical case studies are analyzed in Section 4, and conclusion and future

work are drawn in Section 5.

2. Literature Review

The literatures on production scheduling and on trade-off balancing (or multi-objective

optimization) are vast. In this section, we provide brief reviews in these two areas from

the perspective of heuristic development. For further details about prior research, refer to

Pinedo (2008) and T’kindt and Billaut (2002) for flow shop scheduling, and to Malakooti

(2013) and Slowinski and Weglarz (1989) for trade-off balancing.

2.1. Flow Shop Scheduling

Balancing trade-offs between min(Cmax) and min(
∑
Cj) is still a fundamental challenge

to scheduling in serial processes, especially with different objectives in operations man-

agement, and given Garey et al. (1976) proved that min(Cmax) is NP -complete for a flow
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line with m > 3, and Hoogeveen and Kawaguchi (1999) proved that min(
∑
Cj) is NP -

complete for a flow line with m> 2. Research on flow shop scheduling has been carried out

for more than 6 decades since the classic Johnson’s algorithm in Johnson (1954). During

the first two decades, research on flow shop scheduling focused on seeking optimal solu-

tions by using optimization and branch & bound techniques (Gupta and Stafford 2006).

However, the emergence of NP -completeness theory in the third decade (1975−1984) pro-

foundly influenced the direction of research on flow shop scheduling, changing to seek

near optimal solutions by using heuristics. Initially, min(Cmax) was the primary scheduling

objective for permutation flow shop production. During the fourth decade (1985−1994),

hybrid flow shop production emerged and many artificial intelligence (AI) based heuris-

tics were developed. The fifth decade (1995−2004) witnessed the proliferation of various

flow shop problems, objectives, and solution approaches. Current research on flow shop

scheduling (2005−present) has extended to sustainability (Gahm et al. 2016) in terms of

energy-efficiency, water usage, CO2 emission (Ding et al. 2016, Fang et al. 2011, Zhang

et al. 2014), which intensifies the necessity of trade-off balancing.

Framinan et al. (2004) proposed a general framework for heuristic development consisting

of three phases: index development (generating an initial sequence), solution construction

(changing the initial sequence based on some inserting schemes), and solution improvement

(changing the job sequence based on AI). PDRs are typical examples in phase one. The

NEH heuristic proposed by Nawaz, Enscore, and Ham (Nawaz et al. 1983) and the LR

heuristic proposed by Liu and Reeves (2001) are typical examples in phase two that also

spillover to phase three. As we indicated above, the NEH, LR and FF heuristics are the

best of constructive heuristics to min(Cmax) and min(
∑
Cj), respectively (Kalczynski and

Kamburowski 2007, Ruiz and Maroto 2005, Fernandez-Viagas and Framinan 2015). Meta-

heuristics, such as genetic algorithms, neural networks, and simulated annealing, are typical

examples in phase three. Scheduling methods developed in the first two phases can facilitate

heuristic development in phase three. In general, there is a trade-off between solution

quality and computational complexity or computation time in choosing a heuristic for a

scheduling problem. At one extreme, the solution quality of PDRs is low, but they provide

a solution fast, saving time in decision making, and they are used in the other two phases

of heuristic development. At the other extreme, the solution quality of meta-heuristics is
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high, but it is time consuming to get a solution by using them (Ruiz and Maroto 2005).

Our CFD heuristic proceeds through the first two phases of heuristic development above.

As we compare our CFD heuristic to the best of the best constructive heuristics in our

empirical case studies, we briefly describe the key sequencing logics of the NEH, LR and

FF heuristics. The LPT rule is used as an index function in the NEH heuristic to generate

an initial sequence of n jobs. The first two jobs in the initial sequence are enumerated for

a better partial solution to min(Cmax). As j = 3, ..., n for each of the rest n− 2 jobs in the

initial sequence, job j is inserted into j possible positions in the intermediate sequence,

and one of j partial sequences with min(Cmax) is selected for the next round of iteration

until j = n. The computational complexity of the NEH heuristic originally was O(n3m),

and was improved by Taillard (1990) to O(n2m) for n-job m-machine permutation flow

shop problems to min(Cmax).

In the index development phase of the LR heuristic, an initial sequence is constructed

based on an index function with the sum of two terms, weighted total idle times (IT ) and

artificial total flow times (AT ). Afterwards, each of a number of x jobs is selected as the

first job in the initial sequence and sequence reconstruction based on the above mentioned

index function occurs, generating a number of x candidate LR(x) sequences, where x =

1, ..., n. Local search techniques of both forward pairwise exchanging (FPE) and backward

pairwise exchanging (BPE) are then applied to x reconstructed sequences to improve the

solution quality of LR(x) on min(
∑
Cj). The computational complexity is O(n3m) for

LR(1) without local search, and O(n4m) for LR(n) with local search. Based on Taillard’s

benchmarks (Taillard 1993), LR(n) outperformed six of other heuristics to min(
∑
Cj) (Liu

and Reeves 2001), including the Ho (1995) heuristic. Based on computational complexities

in the same order, we compare our CFD heuristic to the NEH with the original settings

and to the LR(1) without local search.

Similar to the LR heuristic, Fernandez-Viagas and Framinan (2015) also use AT and

IT to construct a job sequence to min(
∑
Cj). Their novel approach integrates two tuning

parameters in the FF heuristic, specifically a parameter a in calculating AT ′ and another

parameter b in calculating IT ′, by which the computational complexity of FF is reduced

to O(n2m). After tuning the two parameters, the FF heuristic with a= 4 and b= 1 out-

performs the LR heuristic on average for Taillard’s benchmarks.
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2.2. Trade-off Balancing

Without loss of generality, a multi-objective combinatorial optimization (MOCO) problem

with a number of q = 1, ...,O minimization objectives can be defined as follows (Czyzak

and Jaszkiewics 1998), min{z1 = f1(x), z2 = f2(x), ..., zO = fO(x)}, subject to x∈ F , where

the solution x is a vector of discrete decision variables and F is the set of feasible solutions.

Czyzak and Jaszkiewics (1998) explicitly pointed out two factors which cause difficulties

in solving MOCO problems. The first is that intensive cooperation with decision makers

(DMs) should be involved in seeking solutions, which requires efficient solutions generated

by effective tools. The second is that an MOCO problem is more difficult to solve, if each

problem of single-objective versions is NP -hard. “Priori” and “posteriori” approaches are

widely used in seeking and evaluating solutions to MOCO problems, respectively (Ciavotta

et al. 2013). A linear function with weights is a typical example of the “priori” approach,

that is, z =
∑O

q=1 βqzq with
∑O

q=1 βq = 1. For example, Framinan et al. (2002) developed

a bi-objective heuristic to minimize the weighted sum of Cmax and
∑
Cj, and the NEH

insertion method was applied. In this heuristic, a function TO= β · n
2
·Cmax +(1−β) ·

∑
Cj

was developed, where β is the weight on Cmax, and an unscheduled job j with minimum

TO is selected and attached to the current partial sequence. Pareto efficiency is a typical

example of the “posteriori” approach. A solution x ∈ F is Pareto efficient, if and only if

there is no x′ ∈ F such that ∀q fq(x′)≤ fq(x) and ∃q fq(x′)< fq(x). Linear functions with

weights as in the “priori” approach usually have metrics measured in different scales, and

it is difficult to map βq into valid preferences of DMs (Ciavotta et al. 2013).

Czyzak and Jaszkiewics (1998) proposed two quality metrics that respectively measure

the average and maximum deviations between the set F and a reference set R, which can

be used to address such a problem in the “priori” approach. Given y ∈ R, the deviation

defined in Czyzak and Jaszkiewics (1998) is dq(x,y) = max{0, [fq(y)− fq(x)]/[fMAX
q (R)−

fMIN
q (R)]}, where fMAX

q (R) and fMIN
q (R) are the maximum and minimum values of func-

tion fq in the reference set R, respectively. Therefore, [fq(y)−fq(x)]/[fMAX
q (R)−fMIN

q (R)]

is a normalized deviation. Based on normalized deviations of dq(x,y), the first metric is

defined as D1R = 1
|R|
∑

y∈R minx∈F{dq(x,y)}, where |R| is the cardinality of set R. The

second metric is defined as D2R = maxy∈R{minx∈F{dq(x,y)}}. D1R measures the average

deviations with equal weights of 1
|R| , and D2R measures the maximum deviation from the

reference set. Moreover, Czyzak and Jaszkiewics (1998) pointed out that the lower the
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ratio D2R/D1R, the more uniform the distribution of solutions from the set F over the set

R. However, DMs should be cautious in using the ratio of D2R/D1R to evaluate heuristics.

A reason will be provided in Section 4.1 based on our case studies. Framinan (2009) and

Ishibuchi et al. (2003) developed different metaheuristics by using the D1R metric, but with

a slight modification, in which the deviation is measured by d(x,y) =
√∑

(f ∗q (y)− f ∗q (x))2,

and f ∗q (·) = [fq(·)− fMIN
q (R)]/[fMAX

q (R)− fMIN
q (R)].

As we will see in the following sections, two underlying ideas characterize our CFD

heuristic in trade-off balancing. Firstly, we operate on two coupled deviations and use α

to decouple them at the operation level. Secondly, we use normalization not only on two

coupled deviations at the operation level, but also on performances of Cmax and
∑
Cj

at the process level, and use β to address preferences on normalized performances. The

magnitudes of Cmax and
∑
Cj are not the same, which is the reason why Framinan (2009)

used β · n
2

to address this concern, but we use normalizations accordingly. Normalized Cmax

and
∑
Cj are dimensionless, and provide accurate values to our TO function for trade-

off balancing. Consequently, our CFD heuristic outperforms the NEH and LR heuristics

respectively on min(Cmax), min(
∑
Cj), and min(TO), whereas Framinan et al.’s heuristic

outperforms other heuristics in their case studies only on min(TO), but does not outper-

form the NEH heuristic on min(Cmax), nor the Ho (1995) heuristic on min(
∑
Cj).

Trade-offs should be balanced not only at the system level, but also at the process and

operation levels. We note that decision making on trade-off balancing only at the system

level is not effective. For example, the economic order quantity (EOQ) model proposed

by Harris in 1913, reprinted in Harris 1990, has been widely applied to balance trade-offs

between production cost and holding cost at the system level. Based on the EOQ model,

many other models have been developed for ordering in different situations, such as the

newsvendor model (Stevenson 2009) and (Q,r) model (Hopp and Spearman 2000). These

trade-off-based models are often embedded in software developed for manufacturing and

services, such as ERP and MRP-II systems (Hopp and Spearman 2000, Orlicky 1975). As

a result, WIP inventory levels are still high in manufacturing systems (GeneralElectric

2014), and waiting times for a surgery are still long in healthcare systems (AHRQ 2013).

In our CFD heuristic, weights α balance trade-offs at the operation level for each job on

each machine, and weights β balance trade-offs at the process level for the performance of

a whole serial process.
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3. A Current and Future Deviations Heuristic

In this section, we first address the concept of deviation from bounds (DB) at the operation

level, which are the reference values of lower and upper bounds of completion times, denoted

as OLCj,i and OUCj,i, and by using which we model the two coupled deviations and

develop an index function with α to generate an initial sequence in phase one of index

development. Second, we address the lower and upper bounds of completion times at the

process level, denoted as PLCj,i and PUCj,i, deviations from which are used in phase two

of solution construction. Third, we address how we model trade-offs at the process level

by using β to reconstruct the initial sequence to obtain a final sequence.

3.1. Two Coupled Deviations for Trade-offs as Initial Sequence

Let pj,i denote the processing time of job j on machine i. For a given sequence, we can

calculate completion times by Cj,i = max{Cj,i−1,Cj−1,i}+ pj,i, where Cj,i is the completion

time of the current job j in the sequence on current machine i, Cj,i−1 is the completion

time of job j on previous machine i − 1, and Cj−1,i is the completion time of previous

job j − 1 in the sequence on current machine i (Pinedo 2008). Based on a state space

(SS) concept proposed by Li et al. (2011b) for flow shop scheduling, a time buffer can be

defined as Bj,i = Cj,i −Cj,i−1, which is actually for the next job j + 1 to be processed on

the previous machine i− 1 without causing an idle time Ij+1,i = max{Cj+1,i−1−Cj,i,0} on

current machine i. Although a large time buffer Bj,i may reduce the sum of idle times

and be good to min(Cmax), it can enlarge the completion time, Cj,i, and be not good to

min(
∑
Cj). For an m-machine flow line, there can be m− 1 time buffers between each

pair of machines, which are created by job j. Thus, one completion time Cj,i contributes

to min(Cmax) and min(
∑
Cj) differently.

Given a partial sequence S for scheduled jobs, we need to calculate completion times

for any unscheduled job j ∈U , which is attached to S, and approximate completion times

for the rest of |U | − 1 jobs. The programming logic is as follows. Given a vector of 1×m

completion times for the last job h ∈ S, we can attach any job j ∈ U to S, and calculate

it’s completion times of [Cj,i]1×m. Initially, S = ∅, |U | = n, and Ch,i = [0]1×m. To save

computation time for completion time approximation of the rest of |U | − 1 jobs, we can

use average processing times (APT ) to calculate artificial completion times (ACk,i) for

k ∈U\j, where APTi =
∑

k∈U\j pk,i/(|U | − 1) (Li et al. 2011a). Consequently, we can have
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a three-dimensional matrix of
[
CU

j,i

]
|U |×m×|U |, where each element in the third dimension

represents a |U | ×m matrix of completion times by attaching a job j ∈ U to S. Based on

the third dimension of
[
CU

j,i

]
, the reference values for lower and upper bounds of completion

times at the operation level for each job j on each machine i are calculated as,

OLCj,i = min
j∈U
{CU

j,i} for i= 1, ...,m,

OUCj,i = max
j∈U
{CU

j,i} for i= 1, ...,m.
(1)

Given
[
CU

j,i

]
, OLCj,i and OUCj,i for j ∈ U , we can quantify two coupled deviations, as

shown in Figure 1. In the next subsection, we provide a programming logic to calculate

lower and upper bounds at the process level, PLCj,i and PUCj,i.

M1

M2

p1,1 p2,1 pj,1 pj+1,1

I1,2 p1,2 I2,2 p2,2 Ij,2 pj,2 Ij+1,2 pj+1,2

pn,1

pn,2In,2

OLCj,i or PLCj,i Cj,i

ΔCT
j,i

ΔCM
j,i

α 
1–α

E(CM) CM & CT

α 

ΔCM

E(CT)

ΔCT

1–α

Obj1

Obj2

1

1

0 0.5

0.5

R

S

O

OUCj,i or PUCj,i

Figure 1 Two coupled deviations

As a completion time Cj,i approaches the upper bound of OUCj,i, it is good to mini-

mize maximum completion time (min(Cmax)) from the idle time perspective, and as Cj,i

approaches the lower bound of OLCj,i, it is good to minimize total completion time

(min(
∑
Cj)) from the completion time perspective. These two coupled deviations for

min(Cmax) and min(
∑
Cj), represented by superscripts CM and CT , respectively, are

defined as

∆CM
j,i =OUCj,i−Cj,i,

∆CT
j,i =Cj,i−OLCj,i.

The aggregation of these two coupled deviations are defined as

ΣCM
j =

m∑
i=1

∆CM
j,i for j ∈U,

ΣCT
j =

m∑
i=1

|U |∑
j=1

∆CT
j,i for j ∈U,
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where the effect of ∆CM
j,i only for current job j ∈ U on all m machines is taken into

consideration in ΣCM
j , but the effect of ∆CT

j,i for all jobs in U and on all m machines is

taken into consideration in ΣCT
j . Given a number of |U | aggregations of ΣCM

j and ΣCT
j , we

can calculate the variation ranges of ΣCM
j and ΣCT

j , respectively, by

RCM
j = max

j∈U
{ΣCM

j }−min
j∈U
{ΣCM

j },

RCT
j = max

j∈U
{ΣCT

j }−min
j∈U
{ΣCT

j }.

Such variation ranges are fixed for evaluating current unscheduled jobs in U .

Our index function to generate the initial sequence is defined as

min
j∈U
{α ·

ΣCM
j

RCM
j

+ (1−α) ·
ΣCT

j

RCT
j

}. (2)

Different from the Framinan et al. (2002) heuristic that directly operates on completion

times, we operate on normalized deviations of ΣCM
j and ΣCT

j from OUCj,i and OLCj,i. The

aggregations of two coupled deviations have different impacts on min(Cmax) or min(
∑
Cj),

even though they are normalized. Assigning a weighting factor α= 0.0 : 0.1 : 1.0 on ΣCM
j to

min(Cmax) and (1−α) on ΣCT
j to min(

∑
Cj), we can choose a job j ∈U with the minimum

sum of weighted deviations, and attach it to S for sequenced jobs. Thus, α serves as a

weight for the min(Cmax) objective relative to the min(
∑
Cj) objective.

Given an initial sequence based on deviations from bounds at the operation level, we

reconstruct the sequence based on the bounds at the process level. Next we provide details

in calculating PLCj,i and PUCj,i.

3.2. Lower and Upper Bounds at the Process Level

Given a completion time of job j on each machine i that Cj,i = max{Cj,i−1,Cj−1,i}+ pj,i

(Pinedo 2008), where pj,i is the processing time, an idle time can be calculated by Ij,i =

max{Cj,i−1−Cj−1,i,0}. Minimum idle times on machine i are generated when completion

times on machine i− 1 are small, but those on machine i are large, which means jobs are

leaving machine i− 1 and arriving at machine i quickly, but leaving machine i slowly. In

contrast, jobs leaving machine i−1 slowly and leaving machine i quickly generate maximum

idle times. Therefore, minimum and maximum idle times, IMIN
j,i and IMAX

j,i , are two key

elements in calculating lower and upper bounds of completion times at the process level,

PLCj,i and PUCj,i, for each job j on each machine i.
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Processing times pj,i on each machine i = 1, ...,m can be sorted into two series. One

series of processing times is sorted by the LPT rule in a non-ascending order, recorded

as pLPT
j,i , and the other is sorted by the SPT rule in a non-descending order, recorded as

pSPT
j,i . Given the assumptions that all of n jobs are available to be processed on machine 1

at time zero, which means there is no idle times on machine 1 so IMIN
j,1 = 0 and IMAX

j,1 = 0,

we calculate PLCj,i and PUCj,i as follows:

IMIN
j,i = max{PLCj,i−1−PUCj−1,i,0}

= max{(PLCj−1,i−1 + IMIN
j,i−1 + pSPT

j,i−1)− (PUCj−2,i + IMAX
j−1,i + pLPT

j−1,i),0},
(3)

IMAX
j,i = max{PUCj,i−1−PLCj−1,i,0}

= max{(PUCj−1,i−1 + IMAX
j,i−1 + pLPT

j,i−1)− (PLCj−2,i + IMIN
j−1,i + pSPT

j−1,i),0},
(4)

and thus

PLCj,i = PLCj−1,i + IMIN
j,i + pSPT

j,i and PUCj,i = PUCj−1,i + IMAX
j,i + pLPT

j,i . (5)

3.3. An Evaluation Function for Trade-offs in Sequence Reconstruction

After generating an initial sequence based on (2), we reconstruct the sequence based on

the following scheme to address trade-offs between output variables at a production line

or process level. Our trade-off function to finalize a sequence is defined as

min
r=1,...,j

{β · Cj,m−PLC1,m

PUCj,m−PLC1,m

+ (1−β) ·
∑j

k=1(Ck,m−PLCk,m)∑j
k=1(PUCk,m−PLCk,m)

}, (6)

where r represents a possible position of job j in the partial sequence of S ∪{j}, and β =

0.0 : 0.1 : 1.0 represents a preference for min(Cmax) relative to min(
∑
Cj). The optimization

in (6) evaluates output deviations on the last machinem and from the lower bounds of PLC

for both min(Cmax) and min(
∑
Cj). Different from calculation at the operation level, the

deviation for min(Cmax) on machine m is based on the difference between the completion

time for current job j and the lower bound for job 1, and the deviation for min(
∑
Cj) is

only for current j jobs in S. This scheme can be extended to evaluate output deviations

on any machine or stage, depending on management concerns.

Similar to the NEH heuristic, we enumerate the first two jobs in the initial sequence,

and get a partial sequence S with a better value in (6). As j = 3, ..., n for the remaining

jobs, we put job j into r = 1, ..., j possible positions of the partial sequence S, and based

on the minimum value of (6), we can finalize a sequence for trade-off balancing.



Li, Nault and Ye: Trade-off Balancing in Serial Process Scheduling
13

The computational complexity of this sequence reconstruction is O(n3m). Therefore,

the overall computational complexity of CFD is O(n3m). Allowing for the weights given

to min(Cmax) and min(
∑
Cj) to differ in the generation of an initial sequence (α) and in

the sequence reconstruction (β) provides additional flexibility in trade-off balancing in our

CFD heuristic.

3.4. Programming Logic and Pseudocode

The programming logic and steps of our CFD heuristic are summarized as follows.

Step 0. Initialization, [P ]n×m for processing times, S for scheduled jobs, which can be

empty initially, U for unscheduled jobs, which can be {1, ..., n} initially, lower and upper

bounds of completion times at the process level, PLCj,i and PUCj,i, which are sequence

independent, according to (3), (4), and (5).

Step 1. Generation of an initial sequence according to (1) and (2). A pseudocode is

provided in Figure 2.

Step 2. Reconstruction of the initial sequence based on (6) and by using the insertion

scheme as in the NEH heuristic, for details of which please refer to Section 2.1 or Nawaz

et al. (1983).

function [S, Cmax, ∑C] = CFD_InitialSeq (P, α, PLC, PUC) 
Sum_P = sum(P,1); %this is for the sum of processing times on each machine 
C_h = zeros(1,m); %for completion time of the last job h in S, initially it is a vector of zeros 
S = []; %for scheduled jobs, initially it is empty  
U = [1:n]; %for unscheduled jobs, initially it equals to all jobs 
for h = 1:n-1 

Calculate ൣܥ௝,௜
௎൧

|௎|ൈ௠ൈ|௎|
;  %according to current completion times of C_h 

Calculate OLCj,i and OUCj,i;  %based on Eq. (1) 
Calculate ∆௝,௜

஼ெ and ∆௝,௜
஼்;  %for two coupled deviations 

Calculate Σ௝
஼ெ and Σ௝

஼்;  %for the aggregation of two coupled deviations 
Calculate ௝ܴ

஼ெ and ௝ܴ
஼்; %for normalization 

Update S, U, and C_h;  %based on Eq. (2) 
end  
Attach the only one job left in U into S; 
Calculate Cmax, ∑C; 
Return S, Cmax, ∑C; 

end of CFD_InitialSeq() 

Figure 2 Pseudocode for an initial sequence

4. Case Studies

To verify the effectiveness of our CFD heuristic in balancing trade-offs between min(Cmax)

and min(
∑
Cj) by using two coupled deviations, we carry out case studies on three types
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of data: small-scale instances, Taillard’s benchmarks, and historical OR data from the

University of Kentucky HealthCare (UKHC). We present the results respectively for each

type of data, and then we discuss the empirical relationships among different sequences to

min(Cmax), min(
∑
Cj) and min(TO) which we define in (9) below, generated by our CFD

heuristic using different weights.

4.1. 5400 Small-Scale Instances

For small-scale instances, the number of jobs ranges from n= 5, ...,10, yielding six options,

and the number of machines is set at m= 2 · (i+ 1) for i= 1, ...,9, yielding nine options

ranging from 5 to 20. For each of the resulting 54 combinations, 100 instances are randomly

generated, and the processing times follow a uniform distribution between [1,99]. Therefore,

there are 5400 small-scale instances in total.

Because the number of jobs is relatively small, n ≤ 10, we can use an enumeration

method to find the best (or minimum) and worst (or maximum) solutions to min(Cmax)

and min(
∑
Cj) as references R. Given best and worst values of fMIN

q,k and fMAX
q,k for each

instance k and for each objective q, with q= 1 for min(Cmax) and q= 2 for min(
∑
Cj), we

can define a normalized deviation (ND) as follows,

NDq,k(H,R) =
fq,k(H)− fMIN

q,k (R)

fMAX
q,k (R)− fMIN

q,k (R)
· 100, (7)

where fq,k(H) is the solution generated by a scheduling method H. This NDq,k(H,R) is

normalized in the same way as dq(x,y) defined in Czyzak and Jaszkiewics (1998). Similarly,

Fernandez-Viagas and Framinan (2015) defined a relative percentage deviation (RPD) as

RPDq,k(H,R) = [fq,k(H)− fMIN
q,k (R)]/fMIN

q,k (R) · 100. Accordingly, an average normalized

deviation (AND) is defined as follows,

ANDq(H,R) =
1

K

K∑
k=1

NDq,k(H,R), (8)

where K is the number of instances.

Based on ANDq for each objective, our trade-off function is defined as follows,

TO(H,R) = β ·AND1(H,R) + (1−β) ·AND2(H,R). (9)

This evaluation metric for trade-off balancing is similar to but different from the D1R

metric defined in the literature. First, TO(H,R) flexibly integrates DMs’ preferences into
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the evaluation, by changing weights β on min(Cmax), not by equal weights as defined in

Czyzak and Jaszkiewics (1998). Second, TO(H,R) actually is the expected value of trade-

off balancing, not a standard deviation, as a squared root of the sum of squared differences

defined in Ishibuchi et al. (2003).

Given α= β in (2) and (6), our CFD(α) heuristic generates 11 sequences, each of which

has [AND1,AND2] values. The comparison between the CFD(α), NEH, LR, and FF

heuristics is shown in Table 1 based on TO values defined in (9) for all 5400 small-scale

instances, where the FF heuristic has parameters a= 4 and b= 1.

Table 1 Balancing Trade-offs between min(Cmax) and min(
∑
Cj) for Small-Scale Instances

Table 1 Trade-off Values of Cmax and ∑Cj with Different Preferences for Small-Scale Instances 

 

β \ α 
CFD(α) 

NEH LR(1) FF 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.0 14.71 15.60 20.28 26.56 35.14 44.33 52.34 59.67 66.50 73.40 82.88 82.52 23.04 28.79 
0.1 20.62 20.03 23.03 27.74 34.65 42.21 48.85 55.10 61.05 67.15 75.62 75.29 28.25 35.08 
0.2 26.54 24.45 25.79 28.92 34.16 40.09 45.35 50.53 55.61 60.89 68.35 68.07 33.46 41.37 
0.3 32.46 28.88 28.55 30.11 33.66 37.96 41.85 45.96 50.16 54.63 61.09 60.85 38.66 47.66 
0.4 38.37 33.31 31.31 31.29 33.17 35.84 38.35 41.39 44.71 48.38 53.83 53.63 43.87 53.95 
0.5 44.29 37.73 34.06 32.47 32.67 33.72 34.85 36.82 39.27 42.12 46.57 46.41 49.07 60.24 
0.6 50.21 42.16 36.82 33.65 32.18 31.60 31.35 32.25 33.82 35.86 39.30 39.19 54.28 66.53 
0.7 56.12 46.58 39.58 34.84 31.69 29.48 27.86 27.68 28.37 29.61 32.04 31.97 59.48 72.82 
0.8 62.04 51.01 42.33 36.02 31.19 27.35 24.36 23.11 22.92 23.35 24.78 24.75 64.69 79.11 
0.9 67.96 55.43 45.09 37.20 30.70 25.23 20.86 18.55 17.48 17.10 17.51 17.53 69.90 85.40 
1.0 73.87 59.86 47.85 38.38 30.20 23.11 17.36 13.98 12.03 10.84 10.25 10.30 75.10 91.69 

Avg. 44.29 37.73 34.06 32.47 32.67 33.72 34.85 36.82 39.27 42.12 46.57 46.41 49.07 60.24 
StD 19.62 14.68 9.14 3.92 1.64 7.04 11.60 15.16 18.07 20.75 24.09 23.95 17.27 20.86 

Two-tailed t-test against the best method 

Cmax 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -- 0.74 0.00 0.00 
∑Cj -- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
TO 0.10 0.33 0.68 0.91 -- 0.54 0.48 0.33 0.21 0.13 0.07 0.07 0.02 0.00 

 

 

  Recalling that α is the weight for the initial sequence and β is the weight for the sequence

reconstruction, for α = 0.0 and β = 0.0 the entry in Table 1 represents the average of

absolute deviations weighted to the min(
∑
Cj) objective, for which CFD(0.0) achieves the

smallest AND2 of 14.71, the LR and FF achieve deviations of 23.04 and 28.79, respectively.

Further, when α= 1.0 and β = 1.0 the entry in Table 1 represents the average normalized

deviations weighted to the min(Cmax) objective, for which CFD(1.0) achieves the smallest

AND1 of 10.25, and the NEH achieves a deviation of 10.30. Given different levels of

preferences for min(Cmax) relative to min(
∑
Cj) such that β = 0.0 : 0.1 : 1.0, CFD(0.3)

achieves the smallest average (Avg) TO value of 32.47, and CFD(0.4) achieves the smallest
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standard deviation (StD) of 1.64. Notice that the LR heuristic generates smaller deviations

than the FF heuristic for all different levels of preferences β for small-scale instances.

For each of three objectives, a two-tailed t-test is carried out among the 14 sequencing

methods (NEH, LR, FF and 11 of CFD) against the best one on min(Cmax), min(
∑
Cj)

and min(TO) respectively, and the p-value is provided in Table 1. Given a 95% confidence

interval, we can tell from Table 1 that CFD(1.0) is not significantly different from the

NEH heuristic on min(Cmax), although it achieves a smaller AND1 value on min(Cmax).

CFD(0.0,0.1,0.2) heuristics are significantly different from the LR and FF heuristics

and achieve better average values on min(
∑
Cj) for small-scale instances. CFD(0.3) and

CFD(0.5) are not significantly different from each other on min(TO), but significantly

different from the LR and FF heuristics.

To better understand the ratio of maximum deviation to average deviation, similar to

D2R/D1R from Czyzak and Jaszkiewics (1998), we provide maximum (Max), minimum

(Min), and standard deviation (StD) of TO values in Table 2, in which, setting prefer-

ences for β = 0.0 or 1.0, trade-off value TO reduces to average normalized deviation for

min(
∑
Cj) or for min(Cmax), respectively.

Table 2 Average Normalized Deviation (AND) on min(Cmax) and min(
∑
Cj) for Small-Scale Instances 

β \ α 
CFD(α) 

NEH LR(1) FF 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

(0.0) 
∑Cj 

Avg 14.71 15.60 20.28 26.56 35.14 44.33 52.34 59.67 66.50 73.40 82.88 82.52 23.04 28.79 
Max 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
Min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
StD 0.20 0.21 0.23 0.26 0.29 0.31 0.32 0.32 0.31 0.30 0.26 0.26 0.26 0.30 

Max/Avg 6.80 6.41 4.93 3.77 2.85 2.26 1.91 1.68 1.50 1.36 1.207 1.212 4.34 3.47 

(1.0) 
Cmax 

Avg 73.87 59.86 47.85 38.38 30.20 23.11 17.36 13.98 12.03 10.84 10.25 10.30 75.10 91.69 
Max 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
Min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
StD 0.29 0.32 0.32 0.29 0.26 0.23 0.21 0.18 0.17 0.16 0.153 0.154 0.30 0.19 

Max/Avg 1.35 1.67 2.09 2.61 3.31 4.33 5.76 7.16 8.31 9.23 9.75 9.70 1.33 1.09 
 

 

  
From Table 2, we can see that the maximum and minimum deviations are 100% and

0% respectively, for all heuristics among 5400 small-scale instances. Although CFD(0.0)

achieves the smallest average and standard deviation values for min(
∑
Cj) respectively,

CFD(1.0) has the smallest ratio of Max/Avg, which is 1.19. Similarly, CFD(1.0) achieves

the smallest Avg and StD values for min(Cmax) respectively, but FF has the smallest
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ratio of Max/Avg, which is 1.09. This result clearly shows that the distribution of per-

formance is more complex than can be evaluated simply by a ratio, and more statistically

robust methods such as statistical process control (SPC) techniques we use in the following

sections can be more reliable.

These results for small-scale instances, based on deviations from optimal solutions,

answer the first question of whether near optimal solutions to simple objectives can balance

the trade-offs. Based on a 2-tuple of [AND1(H,R),AND2(H,R)] that represent deviations

from optimal solutions for a given method q across min(Cmax) and min(
∑
Cj), [10.25,82.88]

for CFD(1.0) has a small deviation on min(Cmax) but a large deviation on min(
∑
Cj),

and [73.87,14.71] for CFD(0.0) has a large deviation on min(Cmax) but a small deviation

on min(
∑
Cj). Comparatively, [23.11,44.33] for CFD(0.5) is between those deviations for

CFD(1.0) and CFD(0.0), respectively. The trade-off values against β are plotted in Figure

3 below, from which we can see that CFD(0.0,0.5,1.0) dominates the NEH and LR heuris-

tics for any preferences over values of β on min(Cmax), and CFD(0.5) has the smallest

trade-off values when β changes approximately from 0.4 to 0.7. Therefore, we conclude

that near optimal solutions to simple objectives cannot balance the trade-offs between

multiple objectives, given the inconsistency between objectives and different preferences

across multiple objectives.
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Figure 3 Trade-off Values vs. Preferences Over β on min(Cmax)



Li, Nault and Ye: Trade-off Balancing in Serial Process Scheduling
18

4.2. 120 Instances in Taillard’s Benchmarks

Taillard’s benchmarks are classic in flow shop scheduling, and are commonly used to test

scheduling methods on min(Cmax) and on min(
∑
Cj). There are 12 scales in Taillard’s

benchmarks, ranging from a 20-job 5-machine flow line to a 500-job 20-machine flow line,

10 instances in each scale, and 120 instances in total.

Because min(Cmax) and min(
∑
Cj) are NP -complete problems, best known solutions

(B) are used to calculate normalized deviations, instead of using optimal solutions. B1 for

min(Cmax) can be found at http://mistic.heig-vd.ch/taillard/. B2 for min(
∑
Cj)

is the minimum between the FF results and those in Liu and Reeves (2001), in which

scheduling methods with high computational complexities are involved in generating B2,

such as meta-heuristics and LR(n) with FPE(n) and BPE(n). As maximization is involved

in this type of case studies on Taillard’s benchmarks, normalized deviations from best

solutions are calculated as follows,

NDq,k =
|fq,k(H,R)−Bq,k(R)|
|Wq,k(R)−Bq,k(R)|

· 100,

where Wq,k(R) represents the worst solution for an instance k. If minimization is an objec-

tive, then Bq = minR fq(R) and Wq = maxR fq(R). Contrarily, if maximization is an objec-

tive, then Bq = maxR fq(R) and Wo = minR fq(R).

To compare our CFD heuristic with NEH, LR and FF, we calculate four other per-

formance measures in addition to min(Cmax) and min(
∑
Cj). The first is the average

utilization (Util) of a flow line, which relates to workload,
∑
pj, and maximum completion

time Cmax on each machine. The second is the average WIP inventory level (WIP -A),

which relates to
∑
Cj on each machine. The third is the sum of maximum WIP inventory

levels (WIP -MS), which means the overall holding capacity of m − 1 WIP inventories

in a flow line. The fourth is the maximum of max WIP inventory capacity (WIP -MM)

that indicates the maximum of m−1 WIP inventories, the location of which is meaningful

for operations management. Li and Freiheit (2016) provide details for calculating these

performance measures. The best and worst solutions on these four performance measures

are based on actual performance of the NEH, LR, and CFD(α) heuristics. The average

normalized deviations on each objective are provided in Table 3, for all 120 instances and

for the NEH, LR, FF, CFD(α) heuristics.
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Table 3 Average Normalized Deviations by CFD(α), NEH, LR and FF Heuristics for Taillard’s Benchmarks

 

Table 3 ARPD by CFD(α), NEH and LR(1) Heuristics for Taillard’s Benchmarks  

 

Metrics 
CFD(α) 

NEH LR(1) FF 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Cmax 86.93 55.71 46.86 40.96 35.58 27.20 22.94 21.12 21.22 21.33 21.96 22.04 84.99 87.91 
∑Cj 20.78 22.11 25.16 31.43 40.60 59.42 68.83 75.83 78.64 85.17 86.77 87.90 22.59 19.88 
Util 83.60 63.98 53.21 48.64 38.41 22.95 15.83 12.70 13.88 11.89 15.11 14.42 86.28 82.69 
WIP-A 10.41 18.38 23.53 32.03 41.93 53.21 64.08 68.78 70.90 76.80 85.98 88.45 11.38 12.01 

WIP-MS 6.95 11.45 13.52 17.82 23.04 26.07 30.33 31.48 32.94 36.58 43.27 45.24 15.65 6.96 
WIP-MM 29.50 28.42 27.25 29.86 33.72 28.86 32.34 34.27 33.80 35.41 40.27 41.94 36.99 27.26 

Two-tailed t-test against the best method 
Cmax 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -- 0.88 0.77 0.20 0.20 0.00 0.00 
∑Cj 0.56 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 -- 
Util 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.58 0.14 -- 0.05 0.11 0.00 0.00 
WIP-A -- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.32 

WIP-MS -- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
WIP-MM 0.46 0.68 -- 0.32 0.05 0.63 0.09 0.04 0.06 0.01 0.00 0.00 0.01 0.01 

 

  
In Table 3, average normalized deviations are evaluated from the best solutions. There-

fore, the smaller the value, the better the solution, and the minimum average deviations are

in bold for each performance measure. The p-values of two-tailed t-tests are also provided

in Table 3 against the best sequencing method.

For min(Cmax), CFD(0.7) has the lowest AND value of 21.12, but based on the t-test, it

is not significantly different from those of CFD(0.8,0.9,1.0) and NEH on a 95% confidence

interval. In this sense, their performances are equivalent on min(Cmax), although each of

CFD(0.7,0.8,0.9,1.0) methods has an AND value smaller than that of 22.04 for NEH.

For min(
∑
Cj), FF has the lowest AND value of 19.88, followed by that of 20.78,

22.11 and 22.59 for CFD(0.0), CFD(0.1) and LR heuristics respectively. Based on the

t-tests, neither CFD(0.0), CFD(0.1) or LR is significantly different from FF. However,

both CFD(0.0) and CFD(0.1) achieve the negative values of NDq,k(H,R) for Taillard’s

benchmarks, which indicate that the CFD(0.0) and CFD(0.1) methods generate solutions

better than those generated by FF and in Liu and Reeves (2001) on two instances by

CFD(0.0) and on one instance by CFD(0.1).

For max(Util), each of CFD(0.7,0.8,0.9) methods outperforms NEH on average, with

the smallest AND value of 11.89 by CFD(0.9), but based on the t-tests, the four methods

of NEH and CFD(0.7,0.8,0.9) are not significantly different in maximizing utilization.

For min(WIP -A), CFD(0.0) requires the lowest WIP inventory capacities on average,

but based on the t-test, the LR and FF heuristics do not have a significantly different per-

formance. However, for min(WIP -MS), it is still CFD(0.0) that requires the lowest overall
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WIP inventory capacities across the process, but based on the t-test, it is significantly

lower than other heuristics.

Finally, for min(WIP -MM), CFD(0.2) requires the lowest maximum WIP inventory

capacity, and based on the t-test, CFD(0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.8) are not significantly

different from each other.

Using the “posteriori” approach, we generate a Pareto frontier in Figure 4 based on

AND values generated by CFD(α), NEH, LR and FF heuristics, from which we can clearly

see that CFD(0.7) dominates CFD(0.8,0.9,1.0) and NEH heuristics.
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Figure 4 A Pareto Frontier Based on Average Normalized Deviations on Cmax and on
∑
Cj

To answer the second question, whether the process is better under control if operations

management focuses on balancing trade-offs instead on optimizing single objectives, we

generate control charts from the statistical process control (SPC) perspective, and show

X-bar and R charts in Table 4, the values of which are based on AND generated by

CFD(1.0), CFD(0.0), and CFD(0.5) methods for min(Cmax), min(
∑
Cj), and min(TO),

respectively. The average performance in X-bar charts, the average variation ranges in R

charts, and relative upper and lower control limits (UCL and LCL) for X-bar and R are

summarized in Table 5. For details of SPC techniques, refer to Montgomery (2007).
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Table 4 Control Charts for Trade-off Balancing on Taillard’s Benchmarks
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Table 5 Average Performance and Control Limits in Control Charts for Trade-off Balancing
Table 4 Average Performance and Control Limits in Control Charts for Trade-off Balancing 

 
  X-bar   X-LCL   X-UCL  

 CFD(1.0) CFD(0.0) CFD(0.5) CFD(1.0) CFD(0.0) CFD(0.5) CFD(1.0) CFD(0.0) CFD(0.5) 

Cmax 21.96 86.93 27.20 15.26 75.55 17.74 28.65 98.31 36.67 

∑Cj 86.77 20.78 59.42 73.79 12.15 46.86 99.76 29.40 71.98 

TO 54.37 53.86 43.31 46.94 45.82 35.67 61.79 61.89 50.95 
  R   R-LCL   R-UCL  

 CFD(1.0) CFD(0.0) CFD(0.5) CFD(1.0) CFD(0.0) CFD(0.5) CFD(1.0) CFD(0.0) CFD(0.5) 

Cmax 21.71 36.91 30.70 4.84 8.23 6.85 38.58 65.59 54.56 

∑Cj 42.13 27.98 40.73 9.40 6.24 9.08 74.86 49.73 72.38 

TO 24.09 26.06 24.78 5.37 5.81 5.53 42.80 46.31 44.04 
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Based on the number of out-of-control points in X-bar charts in Table 4, CFD(0.5)

achieves zero out-of-control points on Cmax, compared to 4 out-of-control points by

CFD(1.0); both CFD(0.0,0.5) have out-of-control points on
∑
Cj, and both CFD(1.0,0.5)

have out-of-control points on TO.

In Table 5 the minimum values of average performance for X-bar and R, and relative

control limits of LCL and UCL for X-bar and R, are highlighted in bold. Based on average

performance of X-bar charts, we can see that CFD(0.5) can achieve a minimum value of

43.31 on min(TO), smaller than those of 54.37 and 53.86 for CFD(1.0) and CFD(0.0),

respectively. Comparatively, the value achieved by CFD(0.5) is 27.20 on min(Cmax), larger

than that of 21.96 achieved by CFD(1.0), and the value of 59.42 by CFD(0.5) on min(
∑
Cj)

is larger than that of 20.78 by CFD(0.0). For average performance of min(TO), CFD(0.5)

also achieves minimum values on relative lower and upper control limits, but not minimum

values on relative control limits for min(Cmax) or min(
∑
Cj), respectively. Regarding X-

LCL and X-UCL as “tolerance” limits on process performance, CFD(0.5) achieves good

performance on trade-off balancing, allowing large variations of process performance on

both min(Cmax) and min(
∑
Cj). This conclusion is further supported by variation ranges

R and relative control limits R-LCL and R-UCL, for each of which CFD(0.5) does not

require minimum values.

Average computation times of CFD(0.5), NEH, LR, and FF heuristics are reported in

seconds in Table 6 based on each scale of 10 instances in Taillard’s benchmarks. The

Matlab codes of all heuristics were run on a Dell Precision T1700 with 32.0 GB RAM and a

CPU of 3.50 GHz. We recognize that computation speed is more accurately reflected based

on the computational complexities of constructive heuristics, rather than on computation

times, because computation times are often influenced by the configurations and software

installed on the computer. Nevertheless, computation time can capture relative differences.

The computational complexity of O(n3m) is implemented for the NEH, CFD and LR

heuristics, and that of O(n2m) for the FF heuristic.

4.3. Historical OR Data from UKHC

Historical OR data from UKHC consists of almost 30,000 patient cases in 365 consecu-

tive days spanning parts of 2013 to 2014. UKHC schedules ORs on weekdays, but opens

emergency rooms on weekends and holidays, thus the number of patient cases on weekends
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Table 6 Average Computation Times on Taillard’s Benchmarks (Sec.)

Computation Time 

 

n by m CFD(0.5) NEH LR(1) FF 
20 by 5 0.02 0.00 0.03 0.00 

20 by 10 0.02 0.00 0.04 0.00 
20 by 20 0.01 0.00 0.03 0.00 
50 by 5 0.05 0.00 0.17 0.00 

50 by 10 0.06 0.00 0.16 0.00 
50 by 20 0.05 0.01 0.16 0.00 
100 by 5 0.17 0.01 0.58 0.00 

100 by 10 0.21 0.04 0.67 0.00 
100 by 20 0.25 0.07 0.72 0.01 
200 by 10 1.11 0.29 3.16 0.06 
200 by 20 1.45 0.59 4.03 0.10 
500 by 20 18.91 9.79 53.18 0.60 

Avg 1.86 0.90 5.24 0.07 
 

 

  
and holidays is much less than that on weekdays. Excluding data points on weekends and

holidays, we have more than 28,000 patient cases in 260 days used in our case study.

Recall that the periop process has three stages of preop, intraop and postop in series.

In practice, utilization rates of the periop process and patient flow time across the periop

process, or average completion time, are two metrics used to evaluate performance of

OR scheduling methods. Maximizing utilization rates is closely related to the objective

min(Cmax). In contrast, minimizing average patient flow time (PtF ) is directly related

to min(
∑
Cj)/n. The relative performance of the CFD, NEH, LR and FF heuristics on

utilization (Util) and on PtF is provided in Table 7, and compared to that of UKHC.

Table 7 Utilization and Average Patient Flow Time
Table 5 Utilization and Average Patient Flow 

 
  CFD(0.0) CFD(0.5) CFD(1.0) NEH LR(1) FF UKHC 

Util 
Avg 86.57 86.65 86.68 86.68 86.53 86.51 86.60 

StD 0.75 0.76 0.76 0.76 0.75 0.75 0.75 

t-test  0.00 -- 0.00 0.00 0.00 0.00 0.00 

PtF 
Avg 337.35 339.45 350.50 358.76 337.39 337.71 375.30 

StD 6.14 6.07 6.32 6.64 6.13 6.13 7.05 

t-test  0.00 -- 0.00 0.00 0.00 0.00 0.00 

 

  

In Table 7, we can see that the CFD(0.0,0.5,1.0) can achieve the best performance

on max(Util), min(PtF ) and min(StD), respectively. Defining a 2-tuple performance of

[Util,P tF ], specifically, UKHC has a performance of [86.60%,375.30], CFD(0.0) has a

performance of [86.57%,337.35], CFD(0.5) has a performance of [86.65%,339.45], and
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CFD(1.0) has a performance of [86.68%,350.50]. Given the performance of [86.68%,358.76],

[86.53%,337.39] and [86.51%,337.71] for the NEH, LR and FF heuristics, respectively, we

can see that CFD(1.0) dominates NEH, and CFD(0.0) dominates LR and FF, for OR

scheduling based on Util and on PtF across the periop process. All scheduling methods

are significantly different from each other based on p-values of t-tests against CFD(0.5).

To further verify that CFD(0.5) can keep the process better under control, we plot

control charts of X-bar and R charts in Table 8 and provide the relative values of X-bar,

R, and control limits in Table 9.

Table 8 Control Charts for Trade-off Balancing on UKHC Data

CFD(α) Util PtF
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For all three methods of CFD(0.0,0.5,1.0), there are no points out of control in X-bar

charts for Util and PtF on UKHC data, although there are three points out of control in

R charts for Util.

In addition to control charts, we further generate process capability charts in Table 10

for CFD(0.0,0.5,1.0) on Util and PtF to see if the periop process is better under control.

According to Montgomery 2007, a process capability (Cp) is used to verify if the process
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Table 9 Average Performance and Control Limits in Control Charts for UKHC DataTable 7 Average Performance and Control Limits in Control Charts for UKHC Data 

  X-bar  X-LCL X-UCL 

 CFD(0.0) CFD(0.5) CFD(1.0) CFD(0.0) CFD(0.5) CFD(1.0) CFD(0.0) CFD(0.5) CFD(1.0) 

Util 86.57 86.65 86.68 85.58 85.65 85.68 87.57 87.65 87.68 
PtF 337.35 339.45 350.50 329.02 331.18 341.88 345.68 347.73 359.11 

  R  R-LCL R-UCL 

 CFD(0.0) CFD(0.5) CFD(1.0) CFD(0.0) CFD(0.5) CFD(1.0) CFD(0.0) CFD(0.5) CFD(1.0) 

Util 1.72 1.74 1.74 0.00 0.00 0.00 3.65 3.67 3.68 
PtF 14.44 14.34 14.94 0.00 0.00 0.00 30.54 30.33 31.59 

 

 is under control, given Cp = (USL − LSL)/(6 · σ), where σ is the standard deviation

of historical process performance, USL and LSL stand for upper and lower specification

limits respectively, and are determined by schedulers based on historical performance. A

process capability index (Cpk) is used to verify if the process drifts way from the average

and tends to be out of control, given Cpk = min[(USL − µ)/(3 · σ), (µ − LSL)/(3 · σ)],

where µ is the average of historical process performance. Given USL and LSL for expected

performance, the larger the Cp and Cpk values, the smaller the process variation and the

more centered the process is under control in terms of µ and σ. To compare the three

methods of CFD(0.0,0.5,1.0) on trade-off balancing, we generate specifications according

to the performance of [86.65%,339.45] by CFD(0.5) with relative standard deviations of

[0.34,2.62]. Given tight specification limits with one standard deviation, the LSL and USL

for Util are [86.31%,87.00%], and for PtF are [336.84,342.07]. Process capabilities of the

three methods are summarized in Table 11.

Given the specification limits set up by the performance of CFD(0.5), in Table 10, we

see that the Util of CFD(0.5) is most centered, compared to that of CFD(0.0) shifting

slightly to the right, and that of CFD(1.0) shifting slightly to the left. The probabilities of

being within the specification limits for Util in Table 11 support this observation, with the

highest probability of 0.9696 for CFD(0.5), followed by 0.9681 for CFD(1.0) and 0.9668

for CFD(0.0). For PtF , CFD(0.5) keeps the process under control the best among the

three methods, compared to that of CFD(0.0) shifting slightly to the right and that of

CFD(1.0) shifting severely to the left. The probabilities of being within the specification

limits for PtF supports this observation as well, with the highest probability of 0.9816

for CFD(0.5), followed by 0.9349 for CFD(0.0) and 0.0354 for CFD(1.0). Moreover, the

negative Cpk value of −0.6022 for CFD(1.0) on PtF also indicates that the patient flow

process is out of control if OR managers simply focus on max(Util).
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Table 10 Process Capability Charts for Trade-off Balancing on UKHC Data

CFD(α) Util PtF
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Table 11 Process Capabilities for Trade-off Balancing on UKHC DataTable 9 Process Capabilities of Trade-off Balancing for UKHC Data 
 Specifications CFD(0.5) 

 LSL USL μ σ 

Util 86.31 87.00 86.65 0.34 
PtF 336.84 342.07 339.45 2.62 

 

 Cp Cpk Prob. between CFD(0.5) Specs 
 CFD(0.0) CFD(0.5) CFD(1.0) CFD(0.0) CFD(0.5) CFD(1.0) CFD(0.0) CFD(0.5) CFD(1.0) 

Util 0.7292 0.7217 0.7178 0.6504 0.7217 0.6903 0.9668 0.9696 0.9681 
PtF 0.7698 0.7859 0.7613 0.5070 0.7859 -0.6022 0.9349 0.9816 0.0354 

 

Overall, if the CFD(0.5) heuristic was used for OR scheduling across the periop process

at UKHC, the process utilization could be slightly improved by 0.058% = (86.65−86.60)÷

86.60,which means some cost saving, and patient flow could be significantly improved

by 9.552% = (375.30− 339.45)÷ 375.30, which indicates that potentially additional 2600

patients could be served in a year. Moreover, the performance of the periop process could

be more stable based on the process capabilities of Cp and Cpk.



Li, Nault and Ye: Trade-off Balancing in Serial Process Scheduling
27

Table 12 Spearman’s ρ among Sequences for Scheduling Objectives

Dataset 1.0 vs. 0.0 1.0 vs. 0.5 0.5 vs. 0.0

Small-scale instances 0.0897 0.2757 0.2193

UKHC historical data 0.0163 0.0197 0.1070

Taillard’s benchmarks 0.0129 0.0425 −0.0039

4.4. Inconsistency among min(Cmax), min(
∑
Cj) and min(TO)

To empirically confirm the inconsistency between min(Cmax) and min(
∑
Cj) we show that

the sequences for these two objectives are uncorrelated with one another, and with the

one for min(TO), we run our CFD heuristic with α= β = 1.0 to generate the sequence for

min(Cmax), with α= β = 0.0 to generate the sequence for min(
∑
Cj), and with α= β = 0.5

to generate the sequence for min(TO). We do this for all three of our datasets: small-scale

instances, Taillard’s benchmarks and UKHC historical OR records. For each of the datasets

we compute the Spearman rank correlation coefficient ρ between the sequences, and these

results are shown in Table 12.

In Table 12, the column 1.0 vs. 0.0 refers to the correlation between min(Cmax) and

min(
∑
Cj), the column 1.0 vs. 0.5 refers to the correlation between min(Cmax) and

min(TO), and the column 0.5 vs. 0.0 refers to the correlation between min(TO) and

min(
∑
Cj). It is obvious that an inconsistency exists between the sequences generated to

min(Cmax) and min(
∑
Cj) with small Spearman rank correlation coefficients that are not

significantly different from zero for all three datasets. Specifically for correlation between

min(Cmax) and min(
∑
Cj), the Spearman ρ is 0.0897 for small-scale instances, 0.0163 for

UKHC historical data, and 0.0129 for Taillard’s benchmarks.

This lack of correlation, positive or negative, between the two sequences generated to

min(Cmax) and min(
∑
Cj) suggests that the two objectives are relatively orthogonal in

implementation. This orthogonality reinforces the value of trade-off balancing in bi-criteria

scheduling: in its implementation our CFD heuristic incorporates characteristics of different

objectives, and improves performance even when sequences generated by the underlying

objectives are uncorrelated.

As the number of jobs n is small, the number of factorial of n, n!, sequences is small.

Therefore, the empirical inconsistencies between min(Cmax) and min(TO) and between

min(TO) and min(
∑
Cj) are less obvious: the Spearman ρ is 0.2757 and 0.2193, respec-

tively, for small-scale instances. As the number of machines or stages m is small, but n is
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large, the empirical inconsistency between min(Cmax) and min(TO) is obvious for UKHC

historical data with a Spearman ρ of 0.0197, but that between min(TO) and min(
∑
Cj) is

less obvious with a Spearman ρ of 0.1070. However, as both n and m are large, the empirical

inconsistencies between min(Cmax) and min(TO) and between min(TO) and min(
∑
Cj) are

obvious for Taillard’s benchmarks with the Spearman ρ of 0.0425 and −0.0039, respectively.

Such lack of pairwise correlation between sequences generated among three objectives indi-

cate that process design should take the number of jobs and the number of operations into

consideration. For example, if the periop process at UKHC was separated into more than

three stages, or a stage was finely tuned into several operations, the inconsistency between

min(TO) and min(
∑
Cj) might be obvious as well.

5. Conclusion and Future Work

Given the property of NP -completeness for each of min(Cmax) and min(
∑
Cj) scheduling

problems, we model the trade-offs by two coupled deviations, providing an innovative and

systematic approach for modeling scheduling problems for serial processes. Based on this

new approach to model scheduling problems, we provide an effective interpretation con-

cerning deviations at the operation level and at the process level, where current deviations

should be taken into consideration for min(Cmax), but both current and future devia-

tions should be considered for min(
∑
Cj). This is because maximum completion time is

purely determined by the sum of idle times for deterministic problems, and future idle

times in U are influenced by current completion times of jobs in S, but not the other way

around. However, total completion time is determined by the sum of weighted idle times

and weighted processing times, which means jobs in both S and U interact with each other

on min(
∑
Cj).

Our systematic approach of analyzing two coupled deviations in our heuristic develop-

ment helps us address the concern about dominance evaluation as in Pareto efficiency,

whereby we should put equal preferences for balancing trade-offs between min(Cmax) and

min(
∑
Cj). This answers the first question that near-optimal solutions to min(Cmax) or

to min(
∑
Cj) cannot balance the trade-offs given the inconsistency between simple objec-

tives. Modelling coupled deviations from upper and lower bounds of completion times by

α, and balancing trade-offs between output variables by β, means our CFD heuristic is

sufficiently flexible to address management concerns at both operation and process levels.
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Through case studies on 5400 small-scale instances, our CFD heuristic outperforms the

NEH, LR, and FF heuristics on trade-off balancing, and on min(Cmax) and min(
∑
Cj),

respectively. Through case studies on 120 instances in Taillard’s benchmarks, the FF heuris-

tic marginally outperforms our CFD heuristic only on min(
∑
Cj), but not on our other

performance metrics, and our CFD heuristic outperforms the NEH and LR heuristic on

all of our performance metrics.

Our approach to model trade-offs between min(Cmax) and min(
∑
Cj) and our CFD

heuristic provide a solid starting point for balancing trade-offs in serial processes, especially

for OR scheduling across the periop process. Based on case studies of Taillard’s benchmarks

and historical OR data at UKHC, trade-off balancing can keep the process better under

control, where the average trade-off values vary in a tight range, but with wider variation

ranges allowable for Cmax and for
∑
Cj, respectively, the utilization and the patient flow

time are improved across the periop process, and the periop process is more under control

using our CFD heuristic for scheduling.

Dynamically updating the lower and upper bounds of completion times at the process

level is part of our future work in heuristic development for better trade-off balancing. This

is because our analysis of deviations is more effective for small-scale instances, on which

our CFD heuristic clearly dominates the NEH, LR and FF heuristics on min(Cmax) and

min(
∑
Cj), respectively, but less effective on min(

∑
Cj) for Taillard’s benchmarks.
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