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Abstract

Investors’awareness of climate risks and attention to green invest-
ments are on the rise especially after the Paris Agreement. It stands to
reason that this rise in awareness has an impact on the connection be-
tween clean energy prices, oil prices and technology prices. In this pa-
per, we test this hypothesis by fitting an exogenous smooth transition
regression model to the cycle of clean energy with oil and technology
stock prices as exogenous regime driving variables before and after the
Paris Agreement. After controlling for carbon price, market volatility,
and policy uncertainty, we find that oil price has a stronger asymmet-
ric persistence on the cycle of clean energy assets pre-Paris Agreement.
In the period post Paris Agreement, however, the roles are reversed.
Technology stock prices are the best regime drivers for clean energy
assets with strong nonlinear asymmetric persistence, and the impact
of oil price is completely absent. The superiority of technology stock
prices over oil prices in driving the cyclical behavior of clean energy
assets supports our argument that the Paris Agreement and other re-
cent climate-related events are contributing to the decoupling of the
clean energy sector from traditional energy markets. Our findings are
particularly important for climate mitigation and adaptation policies.
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1 Introduction

Understanding the impact of oil and technology prices on the performance
of clean energy companies is an important topic for policy makers, regu-
lators, and investors in energy and financial markets. The importance of
this topic has been significantly increasing recently especially after the Paris
Agreement, which was announced to the world on December 12, 2015, and
entered into force in November 2016. This historic event and the recent
climate crisis around the globe have increased investors’ awareness of cli-
mate risks (Alok et al., 2019; Choi et al., 2019; Krueger et al., 2019) and
the negative environmental impacts of fossil fuels (Lauri et al., 2014). This
increase in awareness, in turn, has recently sparked a surge in equity and
capital investments in renewable energy (McCrone et al., 2018). It stands to
reason that this recent noticeable increase in investors’awareness of green
instruments, among other factors, had an impact on the connection between
clean energy prices and oil and technology stock prices.

Indeed, investors are paying more attention to climate risks and to the
rewards of holding green instruments amid the Paris Agreement and the
recent climate-related events. Following Da et al. (2011), who propose a
direct measure of investor attention using Google’s Search Volume Index
(SVI), we depict in Figure 1 plots of Google Trends’monthly SVI for the
worldwide search terms "Paris Agreement," "Climate Risk," "Green Invest-
ment," "Green Bonds," and "Invesco Clean Energy ETF" in Panels a, b, c,
d, and e, respectively, over the period between 2010 and 2020.1 Each SVI
represents the monthly search volume of the corresponding term scaled by
the average search volume of the term. Numbers represent search interest
relative to the highest point on the chart for the given time. A value of 100 is
the peak popularity for the term. A value of 50 means that the term is half
as popular. A score of 0 means there was not enough data for this term. By
looking at the SVI of the term "Climate Risk" in Figure 1 (panel b), we no-
tice that the term achieves a score of 40 in November 2016; the month where
the Paris Agreement entered into force. We notice another peak, though not
significant, around the signing of the agreement. In the period post Paris
Agreement, the term exhibits a positive trend and reaches its peak popu-
larity twice in 2019; namely, in March 2019 and September 2019. March
and April of 2019 were filled with climate-related events. Most notably the

1 Invesco Clean Energy ETF is a clean energy exchange traded fund that includes stocks
of publicly traded U.S. companies that are engagged in business of advancement of clean
energy and conservation. The WilderHill Clean Energy Index (ECO) is the underlying
asset.



youth climate change demonstrations across the world that started with a
teenager in Sweden and spread across the world on Friday, March 15, 2019.2

Soon after the youth strike, the September 2019 climate strikes took place.
This week, which is also known as the Global Week for Future, witnessed
a series of protests around the globe to demand actions to address climate
change. It is clear from the previous worldwide SVI for "Climate Risk"
that people worldwide, including investors, are paying attention to climate
risks around major climate-related events especially the most recent ones.
To focus more on investors’reactions to climate risks, which are typically
manifested as a change in preference towards green instruments, we perform
a worldwide search for the terms "Green Investment," "Green Bonds," and
"Invesco Clean Energy ETF" and plot the corresponding SVI’s in Figure
1, panels c, d, and e respectively. Despite the early spikes in popularity
of the term "Green Investment," it exhibits a significant increasing trend
after the signing of the Paris Agreement in December 2015 until reaching its
peak popularity in November 2016; the date where the agreement entered
into effect. It is also clear that the attention to the terms "Green Bonds"
and "Invesco Clean Energy ETF" is more significant in the recent period.
The previous analysis reveals that the increase in global awareness of the
clean energy sector is more noticeable around the recent major events post
Paris Agreement, e.g., the withdrawal of the U.S. from the Paris Agreement
under the Trump administration in June 2017 and the climate strikes in
September 2019. Since our data set consists mainly of clean energy and
technology stocks of U.S. companies, we repeat the same analysis but con-
fine the search to the U.S. region. We plot the U.S. SVI of the previous
search terms in Figure 2. By looking at the U.S. SVI of the term "Climate
Risk" in panel b, we confirm the previous argument that public attention
rises around climate-related events. For instance, the significant spike in at-
tention in August 2011 is due to hurricane Irene. According to the National
Oceanic and Atmospheric Administration (NOAA), hurricane Irene is the
first U.S. landfalling hurricane since 2008. It caused at least 45 deaths and
more than 7.3 million in damages.3 The hurricane made three landfalls along
the Atlantic coast including a landfall in New York on August 28, 2011. In
fact, according to NOAA scientists, the year 2011 was record-breaking year
for climate extremes including historic levels of heat, flooding, and severe
weather. December 2012 marks another spike in the U.S. SVI for "Climate
Risk." This month corresponds to the Doha Amendment to Koyoto Proto-

2Source: https://www.npr.org.
3Source: https://www.climate.gov.



col for a second commitment period, starting in 2013 and lasting until 2020.
The U.S. SVI index reaches a score of 60 in October 2015. According to a re-
port by the United Nation Climate Change, October 2015 was the warmest
month on record. The globally averaged temperature over land and ocean
surfaces for October 2015 was the highest for October since record keeping
began in 1880.4 It is worth noting that the spike in attention to climate
risk around October 2015 could also have been due to the news reports and
the media coverage of the anticipated signing of the Paris Agreement, which
took place in December 2015. We also notice a spike in July 2017, where the
SVI for "Climate Risk" reaches a score of almost 80. This spike is due to
the mounting worries and anxiety about climate risks following the Trump
administration’s withdrawal from the Paris Agreement. A second notice-
able spike in November 2017 corresponds to the twenty third conference
(COP23) to the United Nations Framework Convention on Climate Change
(UNFCCC), which took place in Germany in November 2017. Finally, in
accordance with the previous worldwide SVI for the term "Climate Risk"
that is depicted in Figure 1 (panel b), we find that the term reaches its peak
popularity in the U.S. around the exact same events; the youth strikes in
March 2019 and the September 2019 climate strikes. Again, it is evident
from the previous analysis that public attention to climate risks in the U.S.
rises around global climate-related events. This rise in public attention is
consistent across the analysis period. However, investors’reactions to cli-
mate risks, as reflected in the demand for green instruments, seem to be
more apparent in the recent period. Judging by the U.S. SVI scores for
"Green Investment," "Green Bonds," and "Invesco Clean Energy ETF," in
Figure 2, panels c, d, e, respectively, we notice the rise in attention towards
green instruments coincides with the recent global climate-related events.
A plausible explanation of this delay in attention to green instruments is
that, although some organizations have already provided creative solutions
(e.g., the World Bank Green Bonds) that have attracted investors’interest in
climate-related investments, investors are still unenthusiastic about invest-
ing in clean energy and green instruments. This lack of enthusiasm is mainly
attributed to investors’lack of knowledge about the potential impact of cli-
mate change on various asset classes (Shen et al., 2019) and/or investors’
belief that green investment is more of a moral choice than a reward (Walley
and Whitehead, 1994; Riedl and Smeets, 2017).

Against the previous backdrop, it is interesting to study how this recent
rise in investors’attention to climate risks and green investments is shaping

4https://unfccc.int/news/october-2015-was-the-warmest-on-record.



Figure 1: Plots of Google Trends’monthly Search Volume Index (SVI) for the
worldwide search terms “Paris Agreement,”“Climate Risk,”“Green Investment,”
“Green Bonds,” and “Invesco Clean energy ETF” in Panels a, b, c, d, and e,
respectively, over the period between 2010 and 2020. Each SVI represents the
monthly search volume of the corresponding term scaled by the average search
volume of the term. Numbers represent search interest relative to the highest point
on the chart for the given time. A value of 100 is the peak popularity for the term.
A value of 50 means that the term is half as popular. A score of 0 means there was
not enough data for this term.



Figure 2: Plots of Google Trends’monthly Search Volume Index (SVI) for the
US search terms “Paris Agreement,”“Climate Risk,”“Green Investment,”“Green
Bonds,”and “Invesco Clean energy ETF”in Panels a, b, c, d, and e, respectively,
over the period between 2010 and 2020. Each SVI represents the monthly search
volume of the corresponding term scaled by the average search volume of the term.
Numbers represent search interest relative to the highest point on the chart for the
given time. A value of 100 is the peak popularity for the term. A value of 50 means
that the term is half as popular. A score of 0 means there was not enough data for
this term.



the connection between clean energy prices and oil and technology stock
prices. More precisely, the objective of this paper is to investigate the clean
energy-oil-technology prices nexus by studying the nonlinear dynamic be-
havior of the cycle of clean energy prices in response to changes in crude oil
price and technology prices pre and post the signing of the Paris Agreement.
Our rationale behind choosing the Paris Agreement as the breakpoint that
defines the recent period of our analysis is twofold: First, from the previous
discussion, attention to clean energy is more significant around the global
climate-related events that took place after the agreement. It is worth not-
ing that the U.S. withdrawal from the Paris Agreement has attracted even
more attention than the signing of the agreement itself. Second, the agree-
ment itself has been widely hailed as a triumph and breakthrough in global
climate cooperation. It is, therefore, sensible to expect the data generating
process, i.e., the cycle of clean energy in the present analysis, to display a
change in variability around the signing of the Paris Agreement. In fact, as
we will discuss shortly, our structural break analysis confirms the existence
of one breakpoint in the clean energy cycle in February 2016; right after the
signing of the agreement.

The rationale behind the positive co-movement of clean energy prices
and the stock prices of technology companies is that the success/failure of
alternative energy companies often depends on the success/failure of related
technologies (Henriques and Sadorsky, 2008) or because investors perceive
the stocks of alternate energy sources as similar to other technological stocks
(Kumar et al., 2012). As for the positive co-movement of oil price and clean
energy prices, the rationale is that the rise in oil price encourages the sub-
stitution of alternate energy sources for conventional energy sources. This
shift in investors’preferences, in turn, causes renewable energy stock prices
to rise (Henriques and Sadorsky, 2008; Kumar et al., 2012, Managi and Oki-
moto, 2013). Following a similar argument in the opposite direction, the fall
in oil price encourages the substitution from clean energy sources to cheaper
oil sources. This, in turn, causes stock prices of clean and renewable energy
companies to drop. Therefore, from a regime switching perspective, the
previous hypotheses imply that changes in crude oil price and technology
stock prices are causing clean energy prices to switch or oscillate between two
regimes: an upper regime, where the driving (also called threshold or transi-
tion) variables, i.e., oil prices and technology stock prices, rise above certain
threshold values, and a lower regime, where they drop below these values.
This cyclical switching of clean energy prices between multiple equilibria, in
turn, implies that clean energy prices are nonlinear, and this nonlinearity is
driven by two transition variables: changes in oil price and changes in tech-



nology stock prices. In this paper, we test the existence of nonlinearity in an
index of clean energy prices and characterize the regime switching dynamic
of the index, as the data generating process, when oil price and technology
stock prices are the driving variables. To this end, we use a time series
approach to extract the cycle of the clean energy index while controlling for
market volatility, policy uncertainty, and carbon price. We then fit a variant
of Granger and Teräsvirta (1993) and Teräsvirta (1994)’s smooth transition
regression (STR) model to the clean energy cycle. The modification, which
is suggested and used by Fahmy (2011, 2014), lies in using changes in crude
oil price and changes in technology stock prices as exogenous regime-driving
variables in the statistical nonlinearity tests of the STR model in addition
to the commonly used autoregressive lags of the data generating process,
i.e., the lags of the clean energy cycle. Augmenting the transition set in the
specification of the STR model with potential transition candidates has the
advantage of capturing the nonlinear causality from these exogenous regime
driving variables to the data generating process (Fahmy, 2011).

In addition to capturing the nonlinear regime switching behavior of the
clean energy cycle, which is driven by oil and technology prices, we also as-
sess the strength of this behavior pre and post the Paris Agreement. Early
empirical studies on the subject prior to the implementation of the Paris
Agreement (e.g., Bondia et al., 2016; Dutta, 2017; Henriques and Sadorsky,
2008; Kumar et al., 2012; Reboredo, 2015; Reboredo et al., 2017; Sadorsky,
2012) seem to agree on the existence of a strong positive association between
the performance of the stocks of renewable energy companies and the move-
ments in oil and technology prices. Some recent studies, however, document
weak or no association between clean energy prices and the price of oil (e.g.,
Elie et al., 2019; Ferrer et al., 2018; Nasreen et al., 2020). Against the
previous background, we investigate the hypothesis of whether the influence
of oil and technology prices, as regime driving variables, on the cycles of
clean energy has strengthened or weakened after the implementation of the
Paris Agreement. To this end, following the structural break test result, we
divide the analysis period into two subsamples: pre-Paris Agreement period
(January 2009 - February 2016) and post Paris Agreement period (March
2016 - December 2019). We then proceed to fit, in each subsample, the STR
model to the cycle of the clean energy index using oil and technology prices
as exogenous regime-driving variables. Finally, we measure and compare the
nonlinear asymmetry and persistence in the cyclical regimes pre and post
the Paris Agreement and document the results.

The present work contributes to the existing literature in several ways:
Firstly, it is the first study that employs a smooth transition regression with



exogenous threshold variables to test whether crude oil price and technology
prices nonlinear cause clean energy prices.

Secondly, the exogenous STR model employed in this paper has two
key advantages: First, it permits, as mentioned above, to statistically test
whether crude oil price and technology stock prices nonlinear cause the
cyclical behavior in clean energy stock prices. This exogenous nonlinear
causality test within the context of the STR model is an alternative to the
conventional Granger causality test that often accompany VAR models (e.g.,
Henriques and Sadorsky, 2008; Kumar et al., 2012, Managi and Okimoto,
2013). Investigating nonlinearity from a different angle is noteworthy to
energy economists and other stakeholders in this sector. Second, by ana-
lyzing the dynamic behavior of the estimated autoregressive regimes, one
can measure and quantify the degree of persistence of the clean energy cy-
cle in each regime following the movements of transition variables, i.e., oil
price and technology stock prices. This, in turn, provides an assessment of
the degree of connectedness between clean energy prices and crude oil and
technology stock prices over time. This is a significant contribution to the
existing literature on measuring these connections; while nonlinearity and
regime switching in clean energy prices are affi rmed by most of the studies
on the subject, the literature does not seem to agree on the co-movement
of clean energy prices and oil and technology stock prices in the short- and
long-run (e.g., Ferrer et al., 2018; Kocaarslan and Soytas, 2019) or on the
degree of association between crude oil and clean energy stock prices. Most
studies (e.g., Dutta et al., 2020; Henriques and Sadorsky, 2008; Kocaarslan
and Soytas, 2019; Kumar et al., 2012; Managi and Okimoto, 2013; Reboredo,
2015; Sadorsky, 2012) report strong association between crude oil price and
clean energy stock prices. Other studies, however, document weak (Bondia
et al., 2016; Elie et al., 2019; Nasreen et al., 2020) or even no association
(Ferrer et al., 2018).

Finally, our results are particularly important for climate mitigation and
adaptation policies. As we will demonstrate in the following sections, by ap-
plying the previous analysis before and after the Paris Agreement, and after
controlling for the impact of market volatility, carbon price, and policy un-
certainty, we document that oil price is leading technology stock prices as a
regime driver for clean energy assets during the early period before the imple-
mentation of the Paris Agreement. In post Paris Agreement period, however,
the roles are reversed. Technology stock prices are the best regime-drivers
for clean energy assets, and the impact of oil price is completely absent in
this period. In other words, the degree of connectedness between crude oil
price and clean energy prices has weakened in post Paris Agreement period



whereas the connectedness between technology stock prices and clean energy
prices has strengthened. Furthermore, we find technology stock prices have
a nonlinear asymmetric impact on the cycle of clean energy assets. A rise
(fall) in technology prices pushes the cycle of clean energy into an upper
(lower) autoregressive regime with a +(-) autocorrelation coeffi cient that is
relatively stronger post Paris Agreement. Thus, the asymmetric persistence
in the cycle of clean energy assets following changes in technology stock
prices is stronger in the recent period. These results are useful for investors
and fund managers in mitigating the risks of their portfolios. For policy
makers, the failure of crude oil prices to capture the nonlinear dynamic be-
havior of the cycle of clean energy assets in the recent period implies that
the clean energy sector does not require policies of protection against the
fluctuations in crude oil price. Finally, the argument that the Paris Agree-
ment and the recent climate-related events are contributing to weakening
the connection between clean energy prices and oil prices has significant im-
plications for climate mitigation and adaptation policies for it confirms the
fruitful efforts of these policies in the battle against climate change. The
idea here is that, in the absence of global efforts to combat climate change,
upward movements in the price of oil encourage the substitution of conven-
tional oil-dependent energy sources to alternate clean energy sources. Global
efforts like the Paris Agreement, efforts of global institutions, e.g., the World
bank, in creating effective green solutions, and the effect of major climate
crises tend to have positive impact on investors’ awareness regarding the
devastating risks of climate change over time. We argue that the continuous
increase in awareness over time will potentially alter investors’preferences
towards green instruments without the need for a spike in oil price to moti-
vate the switch from conventional energy sources to clean ones. The present
study supports this claim by showing that the connection between oil price
and clean energy prices weakens after the Paris Agreement. One plausible
consequence of this argument is the potential inevitable decoupling of the
clean energy sector from the traditional energy market.

The remainder of the paper is organized as follows: Section 2 presents a
brief literature review. Section 3 describes the data. Section 4 presents the
exogenous STR model and discusses the nonlinearity tests and the model
selection criteria. Section 5 presents the estimation results and discusses the
dynamic analysis. Finally, Section 6 concludes and provides implications for
climate mitigation and adaptation policies.



2 Brief literature review

The impacts of crude oil price movements and technology stock prices on
the stock prices of clean energy companies have been well documented in
the empirical literature on the subject. In the early studies before December
2015, i.e., before the announcement of the Paris Agreement, Henriques and
Sadorsky (2008) show that oil prices Granger cause the stock prices of alter-
native energy companies. The authors also study the impact of technological
shocks on alternative energy companies and find, using an impulse-response
analysis, that these technological shocks have a larger impact on the stock
prices of alternative energy companies than oil price shocks. Broadstock
et al. (2012) investigate the dynamics of international oil prices on energy
related stock returns in China and report a stronger relation following the
2008 financial crisis. Kumar et al. (2012) show that oil prices and tech-
nology stock prices separately affect the stock prices of clean energy firms.
Sadorsky (2012) examines the spillover between oil prices and the stock
prices of clean energy companies and technology companies. Using mut-
livariate GARCH models, the author finds that the stock prices of clean
energy companies correlate more highly with technology stock prices than
with oil prices. Managi and Okimoto (2013), using Markov-switching VAR
model, find that both oil prices and technology stock prices have positive
impact on clean energy stock prices after the structural break of the 2008
recession. Bondia et al. (2016) report that technology stock prices and oil
prices Granger cause clean energy prices in the short run but not the long
run. Reboredo (2015), using copulas, studies the tail dependence structure
between crude oil price and clean energy stock prices and finds significant
time-varying average and symmetric tail dependence between oil returns
and several clean energy indices. The author shows that oil price dynamics
contributes around 30% to downside and upside risk of renewable energy
companies. Inchauspe et al. (2015), using a state space multifactor model,
show that the impact of oil prices on renewable energy stock returns has
increased since 2007. Lundgren et al. (2018) document that crude oil is
a net receiver while clean energy stocks are significant net transmitter of
spillover during the recent global financial crisis.

As for post Paris Agreement studies, Dutta (2017) studies the relation
between oil uncertainty as reflected in the information contained in the im-
plied oil volatility index (OVX) and the stocks of clean energy companies.
The author documents that the OVX index is superior to the traditional
oil price series in forecasting the clean energy stock market, and oil price
volatility has an inverse influence on clean energy stocks, implying their



movement in the same direction. Reboredo et al. (2017), using wavelets,
find the existence of short-run co-movement between clean energy prices
and technology stock prices. Dutta et al. (2018) examine the return and
volatility spillover between carbon price and clean energy assets using a
VAR-GARCH approach and document a significant association in the EU
market. Ahmad et al. (2018) report that crude oil, OVX, and the im-
plied market volatility index (VIX) are the best assets to hedge for clean
energy. Kocaarslan and Soytas (2019), using a nonlinear autoregressive dis-
tributed lag model, document that the increased investment in clean energy
stocks is due to speculative attacks along with an increase in oil prices in
the short run. In the long run, however, the increased oil price has a neg-
ative impact on clean energy stock prices. In other words, the impacts of
positive and negative changes in oil prices and technology stock prices on
clean energy stock prices vary significantly over time. More recently, Pham
(2019) studies the sub-sectors of clean energy assets and shows that oil is a
good hedging investment for the sector. Elie et al. (2019), however, report
an opposite result. Using copula method, the authors show that oil is not
a good hedging instrument for clean energy assets. Dutta et al. (2020),
using Markov regime switching regression approach, report a positive, yet
insignificant, effect of crude oil prices on environmental investments. Zhang
et al. (2020), using wavelet-based quantile-on-quantile methods, find that
the effects of exogenous oil price structural shocks on clean energy stocks
vary across quantiles and investment horizons and are asymmetric at higher
quantiles of oil shocks in the long run. Uddin et al. (2019), using cross-
quantilogram approach, report clean energy returns have a strong positive
dependence on oil prices, and this relation is asymmetric across quantiles
with higher asymmetry in the longer lags. Yahya et al. (2021) examine
the connection between the price of crude oil and clean energy stock prices
using a combination of a two-regime threshold vector error correction with
dynamic conditional correlation GARCH model. The authors find nonlinear
regime-dependent long-term connectedness among the two asset classes. In
particular, the clean energy index is found to be the dominant influencer
on the crude oil price in the recent period post the financial crisis. Some
recent studies (e.g., Elie et al., 2019; Nasreen et al., 2020) document weak
association between the two asset classes. A particular study by Ferrer et al.
(2018) finds no association between the two asset classes in the short-term
or the long-term. After controlling for business cycle fluctuations, interest
rates, market uncertainty, and the performance of the traditional fossil fuel
energy industry, the authors show clean energy prices and crude oil prices
follow a very similar pattern in the early period before the 2008 financial



crisis. However, they behave differently in post-financial crisis period as the
clean energy index becomes more independent of the ups and downs of crude
oil prices. Thus, using a different analysis than ours, the authors reach the
same conclusion regarding the decoupling of the clean energy industry from
the traditional energy market.

The previous brief literature survey does not give a clear verdict on the
association between the price of crude oil and clean energy prices. This is
perhaps due to the variations in selecting the sample periods of the analyses,
e.g., around structural breaks or including structural breaks, the selection
of the type of nonlinear model (e.g., VAR, GARCH, or other variants) that
captures this association, and the frequency of the time series. Data on
crude oil price and clean and technology indices is available daily, weekly,
and monthly. High frequency data, for instance, is usually suitable for mod-
els that capture the variability in the variance of the data generating process,
e.g., GARCH models. But aside from these discrepancies in the literature,
it seems that most of the recent studies suggest that the degree of associa-
tion between the price of oil and clean energy prices is weakening or even
breaking recently. Our analysis supports this point of view and, to the best
of our knowledge, is the first to bring the impact of the recent noticeable
rise in investors’awareness about climate risks following the Paris Agree-
ment to the discussion. It is worth noting, however, that while the recent
increase in investors’awareness of climate risks is a plausible explanation to
the decoupling of clean energy sector from the traditional energy market,
there are other factors that contribute to this connection. For instance, the
connectedness between stock prices of new energy and technology firms and
crude oil prices rises amid international financial crisis such as the 2007-2008
financial crisis (Broadstock et al., 2012; Ahmad, 2017; Ferrer et al., 2018).
Other factors such as business cycle fluctuations and oil demand and sup-
ply shocks also provide plausible explanations to changes in connectedness
between these asset classes. Ferrer et al. (2018) argue that the decline in
connectedness during the year 2014 could be related to the collapse in crude
oil price in July 2014, which was caused by the economic slowdown in China,
India, and other emerging economies, the significant growth in Canadian oil
sands and U.S. shale oil, and the refusal of Saudi Arabia to cut crude oil
production.



3 Data description and stationarity tests

In this paper, we study the connection between clean energy prices and
crude oil and technology stock prices over the period between January 2009
and December 2019. The analysis period begins in 2009 and ends in 2019 to
avoid the effect of the 2008 recession and the recent effects of the COVID-19
pandemic on the estimation of the threshold values, i.e., the values taken by
the threshold variables that define the regime switching borders. As we will
discuss shortly, the estimation of the threshold value is based on an initial
grid search over all possible values taken by the threshold variable. Thus,
high swings that are brought by structural breaks could affect the estimated
threshold value, which could, in turn, affect the estimated dynamic behavior
of the clean energy cycle.

We measure the performance of clean energy assets via the WilderHill
Clean Energy Index (ECO). This index, which acts as the data generat-
ing process in the present analysis, is widely used in the literature as a
representative of clean energy assets. ECO tracks businesses listed on the
New York Stock Exchange that benefit significantly from the shift towards
cleaner energy use and zero carbon renewable and conservation. Stocks and
sector weights within the index are based on significance for clean energy,
technological influence, and relevance to prevention of pollution. The two
exogenous regime-driving variables for the cycle of ECO are the NYSE Arca
Technology Index (PSE), as a proxy for technology prices, and the crude oil
spot prices for the West Texas Intermediate (WTI) as a proxy for oil prices.5

PSE is a price weighted index of 100 multi-industry technology companies.
The wide scope of the PSE makes it a good representative of the stock prices
of technology-related companies. The WTI index is commonly used in the
literature as a benchmark for oil price in studying the connection between
clean energy prices and oil prices (e.g., Ahmad, 2017; Ferrer et al., 2018;
Henriques and Sadorskly, 2008; Kumar et al., 2012; Managi and Okimoto;
2013). Daily closing prices on ECO and PSE are sourced from DataStream.
Data on daily closing spot prices of the WTI index is sourced from the U.S.
Energy Information Administration.6 All daily prices are converted into
monthly averages over the study period.7

5For robustness, we also use the Brent crude oil price index for analyses throughout
the paper and document similar findings. The results are available from the author upon
request.

6Source: https://www.eia.gov.
7The nonlinearity analysis was repeated with daily data, weekly averages, and monthly

averages and the results were the same. In particular, the type of the smooth transition



Several studies (e.g., Ferrer et al., 2018, Lundgren et. al, 2018; Yahya
et al., 2021, among others) ascertain the impact of control variables such
as carbon price, market volatility, and policy uncertainty on the connection
between clean energy prices and the oil and technology prices. To control
for these effects, we consider the following three indexes: The U.S. Economic
Policy Uncertainty Index (EPU) as a proxy for the uncertainty of the U.S.
economic policy, the Chicago Board Options Exchange (CBOE) volatility
index (VIX) as a benchmark for market volatility, and the European Energy
Exchange (EEX) Carbon Emissions Allowance settlement price within the
EU emission trading system (ETS) as a proxy for carbon price (CO2). Daily
prices on VIX and CO2 are sourced from DataStream. Daily prices on the
EPU index are sourced from Economic Policy Uncertainty website.8 The
EPU index is used by various studies, e.g., Uddin et al. (2019) and Yahya
et al. (2021), among others, to control for the effect of U.S. economic policy.
Several empirical studies show that equity and other asset prices are sensitive
to changes in the EPU. Kang and Ratti (2015), for instance, show that a
positive shock to EPU leads to a negative impact on global oil production.
Arouri et al. (2016) document an inverse relation between EPU and stock
returns. Raza et al. (2018) show that gold is impacted by EPU. The VIX
index captures the extent of implied volatility in options markets of the S&P
500 over the next 30 days period. It is broadly recognized as a measure of fear
for it captures investors’risk aversion. The VIX index is used extensively
in the literature as a measure of market volatility (e.g., Ahmad et al., 2018;
Basher and Sadorsky, 2016; Ferrer et al., 2018). Finally, to capture the
impact of carbon price on clean energy, we use the EU-ETS settlement price
index (CO2). Although the impact of carbon price is not as significant as
that of oil price (Kumar et al., 2012) and could be country or region specific
(Dutta et al., 2018), many empirical studies (e.g., Managi and Okimoto,
2013; Yahya et al., 2021) control for this variable in their analyses.

We convert the three control variables, i.e., EPU, VIX, and CO2, into
growth rates by taking the first difference of the logarithm of each time series.
Following Box and Jenkins (1970), we extract the cycle of ECO, which will
be denoted by y in the text, while accounting for the growth rates of the
previous control variables, as the least squares residuals from regressing the
first difference of the logarithm of ECO, denoted by 4 log (ECO), on the
first difference of the logarithm of the control variables; that is, y is the

regression model, the threshold values, and the dynamic analysis of the regimes were
pretty much the same using all frequencies. The monthly averages, however, gave the best
fit and yielded the best graphical presentations of the regimes.

8Source: https://www.policyuncertainty.com.
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Figure 3: The cycle of the monthly average of the clean energy index ECO
(Panel a), the monthly percentage change in the WTI crude oil prices (panel
b), and the monthly percentage change in NYSE Arca Tech 100 (PSE) index
(panel c) between January 2009 and December 2019.

residual from the following regression:

4 log (ECOt) = α4log (EPUt)+β4log (VIXt)+γ4log (CO2t)+errort, (1)

for t = 1, ..., T, where T is the sample size.
The first exogenous threshold variable, denoted by sOIL, that captures

the performance of crude oil prices is the percentage change in WTI; that
is, sOIL = 4 log(WTI). The percentage change in PSE is the second thresh-
old variable, denoted by sPSE , and is defined as sPSE = 4 log (PSE) . The
monthly averages of the clean energy cycle, y, and the two exogenous thresh-
old variables, sOIL and sPSE , are plotted in panels a, b, and c, respectively,
in Figure 3 over the analysis period (January 2009 - December 2019).

Before fitting the nonlinear STR model, it is crucial in the data inves-
tigation stage to run stationarity tests on the data generating process, y,
and the regime deriving variables, sOIL and sPSE , to ensure the adequacy



Table 1: Unit root tests.
Time Series ADF(m) PP KPSS KSS

y −4.66(3) −13.25 0.14 −9.22
sOIL −6.68(3) −10.32 0.21 −7.15
sPSE −9.98(1) −13.32 0.06 −7.26

ADF, PP, KPSS, KSS are respectively the test statistics of the Augmented Dickey Fuller,
Phillips and Perron, Kwiatkowski-Phillips-Schmidt-Shin, and Kapetanios-Snell-Shin unit root
tests. The Schwarz information criterion is used to select the lag length, m, in the ADF
regression. All tests except KSS include an intercept. The 5% critical values are -2.88 for
ADF and PP, 0.46 for KPSS, and -2.22 for KSS.

of using such a model. We test the stationarity of the time series using four
different tests; namely, the augmented Dickey and Fuller (1979) test, the
Phillips and Perron (1988) test, the Kwiatkowski et al. (1992) test, and the
Kapetanios et al. (2003) test. The latter test is particularly significant in
the present analysis for it detects the presence of nonstationarity against
nonlinear but globally stationary smooth transition autoregressive process,
which is precisely the STR model that we intend to use. The test statistics
pertaining to the previous three tests, denoted by ADF, PP, KPSS, and
KSS respectively, are reported in Table 1. Judging by the 5% critical value,
which is -2.88 for ADF and PP, we reject the null hypothesis that the data
series has a unit root. Judging by the 5% critical value, which is 0.46 for the
KPSS, we do not reject the null hypothesis that the series are stationary.
Finally, judging by the 5% critical value, which is -2.22 for KSS, we also
reject the unit root hypothesis and conclude that all the series are station-
ary. To confirm the robustness of the results, we apply the KSS test to the
level of ECO, WTI and PSE series. Guided by the test statistics, which are
-2.25, -2.37, and -2.88 for ECO, WTI, and PSE respectively, we confirm the
stationarity of the series in the levels as well as in the rate of growth.

The results of the previous unit root tests imply that if nonlinearity is
present in the ECO cycle, y, and if either sOIL or sPSE is the regime-driving
variable, then, y will be exogenously pushed to different regimes. However,
by stationarity, it will not permanently stay in one particular regime for
ever. It can persist in one regime for a while, but it will always revert back
to the other regime. The previous stationarity results, therefore, justify the
application of the exogenous STR model.



4 Empirical framework and methodology

4.1 Identifying the pre and post Paris Agreement subsam-
ples

Although, regime switching models, e.g., Markov switching model (Hamil-
ton, 1989), threshold autoregressive model (Tong, 1983), smooth transition
autoregressive (STAR) model (Granger and Teräsvirta, 1993; Teräsvirta,
1994), and Fahmy’s (2011, 2014) exogenous STR model, share the common
objective of modelling the regime switching behavior or the cyclical behavior
of the data generating process, they differ in their treatment of the switch-
ing mechanism. For instance, Markov switching models assume that the
switching mechanism between the regimes is an unobserved (latent) Markov
chain. Threshold and STR models, on the other hand, assume that the
regime driving variable is one of the autoregressive lags of the data generat-
ing process, i.e., one of the lags of the clean energy cycle in this study. The
exogenous STR model allows for the possibility that the data generating
process is driven by an exogenous variable. This model often yields a bet-
ter fit than the classic STR model especially if there is a reason to believe
that the exogenous regime driving variable is causing the regime switching
dynamic in the data generating process (Fahmy, 2011, 2014).

In this paper, we employ the exogenous STR model to the clean energy
cycle, y, with changes in oil prices, sOIL, and changes in technology stock
prices, sPSE , as potential exogenous transition/threshold variables. This
model is particularly suitable here since the intention is to test the observed
impact of the movements in oil and technology stock prices on the dynamic
behavior of clean energy. Furthermore, the recent literature that documents
an increase in investors’awareness of climate risks (e.g., Alok et al., 2019;
Choi et al., 2019; Krueger et al., 2019) and our earlier analysis suggest a
change in the impact of oil and technology prices on clean energy prices
around the signing of the Paris Agreement. To test the validity of this
argument before fitting the STR model, we employ the iterative cumulative
sum of squares (ICSS) structural break test to the cycle of clean energy. The
ICSS is a procedure that searches for breaks in variance using the algorithm
described in Inclan and Tiao (1994). The underlying assumption of the
procedure is that the data generating process, i.e., y, has a common mean,
but possibly different variances within subsamples. The test statistic has
a non-standard distribution because the procedure does a search in breaks.
In particular, the procedure takes the significance level (or critical value) as
an input and searches for break points where the variance is significantly



different before and after those points. This procedure is, therefore, suitable
here since the STR model describes nonlinearity in the mean of the data
generating process allowing for the possibility of having different variances
within subsamples.

Using 5% level of significance, the ICSS test reveals the existence of a
breakpoint in the monthly cycle of clean energy in February 2016; right
after the announcement of the Paris Agreement. Guided by the results of
this test, we break the analysis period (January 2009 - December 2019)
into two subsamples: The period between January 2009 and February 2016,
and the period between March 2016 and December 2019. We will refer to
the former as pre-Paris Agreement period and to the latter as post Paris
Agreement period. To visualize the breakpoint, we compute the variance
(sum of squares over the number of observation) for each of the subsamples
and create two standard deviation upper and lower bounds relative to the
common mean of the series y. The two bounds and the cycle y are depicted
in Figure 4. Notice how the bounds change from the early subsample to the
recent one at the breakpoint.

4.2 The exogenous STR model

The standard exogenous STR model of order p fitted to yt is expressed, in
general, as follows:

yt = Ψ
′
zt +Θ

′
ztG(st) + εt, t = 1, ..., T, (2)

where yt is the clean energy cycle, zt = (1, yt−1, ..., yt−p)
′

=
(

1, z̃
′
t

)′
is a vec-

tor of lags of yt, Ψ = (ψ0, ψ1, ..., ψp)
′

=
(
ψ0, Ψ̃

′
)′
and Θ = (θ0, θ1, ..., θp)

′
=(

θ0, Θ̃
′
)′
are parameter vectors, εt is an i.i.d(0, σ2) error term, and G (st)

is a continuous logistic transition function of the regime driving variable st
such that st ∈ Ω, where

Ω = {yt−1, ..., yt−p, sOILt, sOILt−1, ..., sOILt−p, sPSEt, sPSEt−1, ..., sPSEt−p, t}
(3)

is a transition set that includes the p lags of yt, the exogenous threshold
variables sOILt and sPSEt and their lags, and a time trend t.

The function G is a logistic function of order k in the transition variable
st, and is defined by the equation

G =
1

1 + exp{−γ (st − c1)× · · · × (st − ck)}
, γ > 0, (4)
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Figure 4: A plot of the cycle of ECO around a common mean of -0.0043 and
the upper and lower two standard deviations relative to the common mean.
The break occurs in February 2016.



where γ is a slope coeffi cient, and cj , j = 1, ..., k, are k locations parameters
such that c1 ≤ · · · ≤ ck. The behavior of G depends on the choice of the
number of location parameters, i.e., the order k. Testing nonlinearity in yt
against each transition candidate in the set Ω and the selection of the model
type, i.e., the order of the logistic function, are performed in the specification
stage of the STR model building. For instance, a STR(p) model with a
logistic function of order k = 1, or STR1 for short, has the following logistic
function:

G =
1

1 + exp{−γ (st − c)}
, γ > 0, st ∈ Ω, (5)

and c is the threshold value. The function in Equation (5) is bounded
between 0 and 1. This gives rise to two distinct regimes around the threshold
value c. When the regime-driving variable st is less than the threshold value
c, the function G approaches 0 and the data generating process, i.e., yt in
Equation (2), displays a lower AR(p) regime defined as

yt = ψ0 + ψ1yt−1 + · · ·+ ψpyt−p + εt, t = 1, ..., T. (6)

The upper regime, on the other hand, is defined when st > c, i.e., st −→ +∞.
In this case, G tends to 1, and yt in Equation (2) displays an upper AR(p)
regime defined as

yt = (ψ0 + θ0) + (ψ1 + θ1) yt−1 + · · ·+ (ψp + θp) yt−p + εt, t = 1, ..., T. (7)

In other words, in the STR1 model in Equation (2) with G defined as in
Equation (5), the parameter vectors Ψ and Θ change monotonically as a
function of the exogenous transition variable st from Ψ to Ψ+Θ. The speed
and the smoothness of transition between the lower and the upper regimes
depend on the slope of the function, γ. Figure 5 shows three different logistic
functions of order 1; a smooth function with a small slope γ = 0.8 (solid thin
line), a smooth function with a moderate slope γ = 4 (dashed thin line),
and an abrupt transition function with a large slope γ = 30 (dashed thick
line).

4.3 Nonlinearity tests and model selection

Before fitting the STR model in Equation (2) to the clean energy cycle yt
in both subsamples, the analysis begins by identifying the lag order p of
the STR model. Guided by the Schwarz information criterion, which is
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Figure 5: A first order logistic function with a small slope γ = 0.8 (solid
thin line), moderate slope γ = 4 (dashed thin line), and a large slope γ = 30
(dashed thick line). The location parameter c = 0.5.

minimized at the first lag of yt, we fit an exogenous STR model with p = 1
to the clean energy cycle; that is,

yt = ψ0 + ψ1yt−1 + (θ0 + θ1yt−1)G+ εt, t = 1, ..., T, (8)

where G is a logistic function of order k, st ∈ Ω, and

Ω = {yt−1, sOILt, sOILt−1, sPSEt, sPSEt−1, t} . (9)

The next step is nonlinearity testing. Since the nonlinear STR model in
Equation (2) is only identified under the alternative hypothesis, Luukkonen,
Saikkonen, and Teräsvirta (1988) and Teräsvirta (1994) suggest replacing
the transition function G in Equation (2) by a Taylor approximation about
the null hypothesis γ = 0. In particular, the authors assume a first order
logistic function, i.e., k = 1 in Equation (4), and perform a third order
Taylor approximation about the null hypothesis γ = 0. The approximation
yields

yt = Ψ
′
zt +

1

4
γΘ

′
zt(st − c)−

1

48
γ3Θ

′
zt(st − c)3 + εt. (10)

Using zt = (1, z̃
′
t)
′
,Ψ = (ψ0, Ψ̃

′
)
′
, and Θ = (θ0, Θ̃

′
)
′
, and reparameterizing,

equation (10) can be expressed as

yt = δ0 + δ
′
1z̃t + π

′
1z̃tst + π

′
2z̃ts

2
t + π

′
3z̃ts

3
t + ε∗t , (11)

where ε∗t = εt + R(γ, c, st); R(·) being the remainder and πj , j = 1, 2, 3, is
of the form γπ̃j , where π̃j 6= 0 is a function of Θ̃. The null hypothesis of



linearity is then H0L : π1 = π2 = π3 = 0. Also note that because ε∗t = εt
under the null hypothesis, the asymptotic theory will not be affected if an
LM test is used. Following Luukkonen et al. (1988) and Teräsvirta (1994), a
convenient procedure for computing the LM statistic by OLS is to estimate
Equation (11) under the null hypothesis and compute the sum of squares of
the residuals (SSR0), then estimate (11) under the alternative hypothesis
and compute SSR1. The LM statistic is computed as LM = T (SSR0−SSR1)

SSR1
.

The test statistic has an asymptotic chi-square distribution with 3p degrees
of freedom when the null hypothesis is valid. However, the F statistic is
recommended because the chi-square statistic can be size-distorted in small
and even moderate samples. In this paper, the F distribution with 3p and
T−4p−1 is used when the null hypothesis H0L is valid. The test is repeated
for each transition candidate in the transition set Ω in Equation (9). If the
null hypothesis of linearity, H0L, using the F test (FL) is rejected for at least
one of the models, the model against which the rejection, measured in the
p-value, is strongest is chosen to be the STR model to be estimated.

Another purpose of conducting linearity tests is to use the results for
model selection. If linearity is rejected and a transition variable is selected,
the next step is to choose a model type, e.g., to choose between STR1 and
STR2 models. The choice between the models can be based, again, on the
auxiliary regression in Equation (11). Teräsvirta (1994) shows that when
c = 0 then π2 = 0 when the model is an STR1, whereas π1 = π3 = 0 when
the model is an STR2. The author suggests the following F tests sequence
based on the auxiliary regression in (11):

1. Test the null hypothesis: H04 : π3 = 0 with an ordinary F test (F4).
A rejection of H04 can be interpreted as a rejection of the STR2.

2. Test the null hypothesis that π2 = 0 given that π3 = 0, H03 : π2 =
0|π3 = 0, using another F test (F3). Failure to reject H03 indicates
that the model is an STR1.

3. The last F test (F2) in the sequence is to test the null hypothesis
that π1 = 0 given that π2 = π3 = 0 as H02 : π1 = 0|π2 = π3 = 0.
Rejecting H02 after accepting H03 supports the choice of the STR1
model. Accepting H02 after rejecting H03 points to the STR2 model.

4. After carrying out the three F tests and noting which hypotheses are
rejected, if the test H03 yields the strongest rejection measured in the
p-value, choose the STR2 model; otherwise select the STR1 model.



We execute the previous sequence of nonlinearity tests for each of the
potential transition variables in the transition set Ω in Equation (9) pre and
post the Paris Agreement and report the results, respectively, in Tables 2
and 3. For pre Paris Agreement subsample, the current change in oil price,
s∗∗OILt, tagged with the symbol **, is the variable with the strongest test
rejection, i.e., the variable with the smallest p-value of the FL statistic as
shown from the second column of Table 2. The second-best variable in the
transition set is the current change in technology stock prices, s∗PSEt. The
suggested model type in each case is the STR model of order 1. The previous
results show that the two exogenous transition variables, sOILt and sPSEt,
are the best two candidates in the transition set Ω that can drive the regime
switching behavior of the clean energy cycle yt in the period before the Paris
Agreement. This confirms the connection (and the exogenous causality)
between clean energy prices and oil and technology stock prices in this early
subsample. Furthermore, the superiority of oil over technology prices is
confirmed from the highest rejection of linearity in case of oil. This suggests
that oil has a dominant impact on the cycle of clean energy assets in this
subsample. As for post Paris Agreement subsample, the nonlinearity and
model selection tests results in the first column of Table 3 show that the first
lag of technology stock prices, s∗∗PSEt−1, is the best exogenous regime-driving
variable for the clean energy cycle during this recent period. The striking
result of the nonlinearity tests in Table 3 is that oil price fails to capture
the nonlinearity in the cycle of clean energy assets in this subsample. The
suggested linear model in the last column of Table 3 confirms this result. The
previous results confirm the existence of an exogenous one-way directional
causality from oil price and technology stock prices to clean energy prices
in the early subsample and an exogenous one-way causality from technology
stock prices to clean energy in the latter subsample.9 In the present STR
context, the above-mentioned exogenous nonlinearity tests can be considered
as an alternative to the Granger causality tests that are normally executed
in the VAR context.

In sum, the previous analysis reveals two key results: First, both oil price
and technology stock prices have an impact on the cyclical behavior of clean
energy assets. Second, despite the superiority of oil as a leading regime-

9We also examine the other directional exogenous causality and find insignificant re-
sults. In particular, we apply the same nonlinearity tests to the cycle of crude oil price
and to the cycle of the NYSE Arca Technology Index with changes in the WilderHill
Clean Energy Index as exogenous transition variable. We find that the null hypothesis of
linearity is not rejected in both cases and, therefore, we rule out this directional exogenous
causality. The results are, however, omitted due to space limitation.



Table 2: Nonlinearity tests and model type pre Paris Agreement (January
2009 - February 2016).
st FL F4 F3 F2 Suggested Model

yt−1 1.037× 10−2 4.198× 10−2 7.788× 10−1 7.215× 10−3 STR1
s∗PSEt 9.775× 10−3 3.446× 10−1 1.713× 10−1 1.367× 10−3 STR1
s∗∗WTIt 1.408× 10−3 1.127× 10−1 1.627× 10−1 9.614× 10−4 STR1
sPSEt−1 2.821× 10−1 2.566× 10−1 3.247× 10−1 2.920× 10−1 Linear
sWTIt−1 8.813× 10−1 5.853× 10−1 8.237× 10−1 6.317× 10−1 Linear
t 2.884× 10−2 3.674× 10−2 3.449× 10−2 7.494× 10−1 STR2

P-values of the linearity F-tests sequence applied to the cycle of ECO when the
percentage change in oil price and technology stock prices are transition variables.
The variable tagged with the symbol ** shows the highest rejection of linearity.

Table 3: Nonlinearity tests and model type pre Paris Agreement (March
2016 - December 2019).
st FL F4 F3 F2 Suggested Model

yt−1 5.611× 10−2 1.967× 10−1 7.072× 10−2 1.036× 10−1 Linear
sPSEt 1.359× 10−1 1.324× 10−2 8.154× 10−1 8.829× 10−1 Linear
sWTIt 7.196× 10−1 9.728× 10−1 2.019× 10−1 7.982× 10−1 Linear
s∗∗PSEt−1 1.930× 10−2 3.733× 10−2 9.685× 10−2 1.536× 10−1 STR1
sWTIt−1 5.489× 10−1 2.767× 10−1 4.503× 10−1 7.057× 10−1 Linear
t 5.951× 10−1 3.809× 10−1 4.914× 10−1 5.443× 10−1 Linear

P-values of the linearity F-tests sequence applied to the cycle of ECO when the
percentage change in oil price and technology stock prices are transition variables.
The variable tagged with the symbol ** shows the highest rejection of linearity.



Table 4: Nonlinearity tests and model type over the entire analysis period
(January 2009 - December 2019).
st FL F4 F3 F2 Suggested Model

s∗∗∗JOINTt 4.124× 10−3 2.979× 10−1 1.643× 10−1 1.384× 10−3 STR1
s∗∗PSEt 1.216× 10−2 4.556× 10−1 8.230× 10−2 7.137× 10−3 STR1
s∗WTIt 1.505× 10−2 1.511× 10−1 3.500× 10−1 6.771× 10−3 STR1
sJOINTt−1 8.252× 10−1 9.707× 10−1 9.964× 10−1 2.409× 10−1 Linear
sPSEt−1 3.641× 10−1 3.617× 10−1 9.969× 10−1 1.026× 10−1 Linear
sWTIt−1 7.715× 10−1 4.655× 10−1 8.243× 10−1 5.034× 10−1 Linear
t 1.834× 10−1 1.549× 10−1 8.836× 10−2 9.094× 10−1 Linear

P-values of the linearity F-tests sequence applied to the cycle of ECO when the
percentage change in oil price, the percentage change in technology stock prices,
and the percentage change in their product (joint effect) are transition variables.
The variable tagged with the symbol *** shows the highest rejection of linearity.

driving variable for the cycle of clean energy in the early period, its impact
has weakened after the Paris Agreement whereas the impact of technology
stock prices has strengthened. We confirm the robustness of the previous
two results over the entire sample period by executing the previous sequence
of nonlinearity tests one more time on each variable in the set

Π = {sPSEt, sPSEt−1, sWTIt, sWTIt−1, sJOINTt, sJOINTt−1, t} , (12)

where sJOINT = 4 log(WTI × SPE) represents the joint impact of oil and
technology prices when both variables enter simultaneously as one exoge-
nous transition variable in the STR model, and everything else is defined
as before.10 We document the results in Table 4 and note that s∗∗∗JOINT is
the best transition variable in the set followed by s∗∗PSE and s

∗
WTI in that

order. The fact that s∗∗∗JOINT is the best transition variable over the entire
sample confirms the validity of the first result that documents the joint im-
pact of oil and technology prices on the cycle of clean energy. The previous
ranking also shows that the growth rate of the PSE index is the second best
regime-driving variable and oil comes last. This confirms the robustness of
the superiority of technology stock prices over oil price in driving the cycli-
cal behavior of clean energy assets that is deduced by the second result.
Finally, another robust result that is consistent across the two subsamples
10Notice that the percentage change of the product of two variables is the sum of their

percentage changes.



and the entire sample is that the model associated with sOIL and sPSE is
the STR1 model in Equation (8) with a first order logistic function as de-
fined in Equation (5). This model, as discussed earlier, displays two distinct
AR(1) regimes around the parameter c, i.e., the threshold value taken by
the corresponding transition variable. It is worth noting that the result that
the same STR1 model fits both regime driving variables does not necessarily
imply that the clean energy cycle yt displays the same behavior with each
transition variable. As we will discuss shortly in the following section, the
estimation results and the dynamic analysis reveal different degrees of per-
sistence and asymmetry in the cycle of clean energy assets for each transition
variable in the two subsamples of the analysis.

5 Estimation results and dynamic analysis

In this section, we fit the exogenous STR1 model to the clean energy cy-
cle with the exogenous regime-driving variables that are suggested by the
nonlinearity analysis in Section 4 pre and post the Paris Agreement. We
discuss the dynamic analysis of the regime switching behavior of the clean
energy cycle in each case and document the results of the analysis. The
estimation is carried out individually for each transition variable using max-
imum likelihood method conditional on the two parameters γ (the slope of
the transition function) and c (the threshold parameter). The conditional
log-likelihood function of the STR1 model in Equation (8), which is defined
as

L(ψ0, ψ1, θ0, θ1, σ, γ, c) = −1

2
ln(2π)− 1

2
ln(σ2) (13)

− 1

2

{yt − (ψ0 + ψ1yt−1 + (θ0 + θ1yt−1)G)}2
σ2

,

is maximized using the iterative Broyden-Fletcher-Goldfarb-shanno (BFGS)
algorithm. The starting values for the algorithm are obtained by construct-
ing a two-dimensional grid in γ and c. The values that minimize the residuals
sum of squares (SSR) are taken to be the starting values of the maximization
procedure.

5.1 Grid search analysis

Guided by the nonlinearity tests results in Table 2 for pre-Paris Agreement
subsample, we apply the previous grid search procedure for yt when sOILt
and sPSEt are exogenous transition variables. We find that the starting



values that minimize the SSR are γ = 2 and c = −9.1% when sOILt is
the transition variable, and γ = 2.895 and c = 4.76% with sPSEt. We plot
three-dimensional grids in (γ, c, SSR) space in Figures 6 and 7 in case of oil
and technology stock prices respectively. The previous preliminary values
of the slopes of the transition function suggest that, in this subsample, the
transition between the upper and lower regime of the clean energy cycle is
expected to be moderately smoother when the percentage change in tech-
nology stock prices is the regime driving variable. Indeed, as we will show
in the next subsection, the estimation results confirm this prediction. As
for post Paris Agreement subsample, the results of the nonlinearity tests in
Table 3 show that the one period lag of the growth rate of technology stock
prices, sPSEt−1, is the best exogenous transition variable in this subsam-
ple. Oil price fails to capture the cyclical nonlinear behavior of clean energy
assets in this subsample. We, therefore, apply the previous grid search pro-
cedure only for sPSEt−1. The starting values in this case are γ = 1.7271
and c = 7.19%. The three-dimensional grid in (γ, c, SSR) space is plotted
in Figure 8.



Figure 6: Three-dimensional grid
for sOILt in (γ, c, SSR) space
pre-Paris Agreement. The

minimum sum of squares of the
residuals SSR = 0.3456 is

achieved at γ = 2 and c = −9.1%.

Figure 7: Three-dimensional grid
for sPSEt in (γ, c, SSR) space
pre-Paris Agreement. The

minimum sum of squares of the
residuals SSR = 0.3495 is
achieved at γ = 2.895 and

c = 4.76%.

Figure 8: Three-dimensional grid
for sPSEt− 1 in (γ, c, SSR) space

post Paris Agreement. The
minimum sum of squares of the

residuals SSR = 0.0980 is achieved
at γ = 1.7271 and c = 7.19%.



5.2 Estimation results

The estimation results of fitting the STR1 model in Equation (8) with sOILt
and sPSEt as exogenous transition variables in the period before the Paris
Agreement, and with sPSEt−1 in the period after the agreement, and the
misspecification tests results are reported, respectively, at the top and the
bottom of Table 5.11 The figures in brackets underneath the models’ co-
effi cients are p-values, σ̂s is the standard deviation of the corresponding
exogenous transition variable s, σ̂2 is the variance of the residuals, R

2
is the

adjusted coeffi cient of determination, AUTO(j) is the p-value of the Ljung
and Box (1978) test of no serial correlation of order j, ARCH(i) is the p-
value of Engle’s (1982) test of no ARCH of order i, NRNL is the p-value of
Eitrheim and Teräsvirta (1996) and Teräsvirta (1998)’s test of no remaining
nonlinearity in the fitted STR model, JB is the p-value (at the 5% signifi-
cance level) of the Jarque and Bera (1987) test of normality, and finally SK
and KU are skewness and kurtosis respectively.

Other than the insignificant intercept coeffi cient of the linear part in the
STR1 model fitted to y with sPSEt−1 at the bottom of Table 5, which was
dropped from the analysis, all models’coeffi cients in both subsamples are
significant at the 5% level as shown from the corresponding p-values. The
values of the adjusted coeffi cients of determination are R

2
= 0.69 and R

2
=

0.64 in the case of sOIL and sPSE in the early subsample, and R
2

= 0.62
in case of sPSEt−1 in the recent subsample, which is indicative of a good
fit. This is also confirmed from Figures 9, 10, and 11, where the original
and fitted series of yt are respectively plotted for sOILt and sPSEt in the
early subsample and for sPSEt−1 in the recent subsample. All models pass
the no remaining nonlinearity, no serial correlation, and no ARCH tests
as shown from the reported p-values of these tests. The hypothesis that
the error term is normally distributed is not rejected at the 5% level of
significance as shown from the p-values of Jarque and Bera (1987) test for
all models, and from the plot of the standardized residuals series in Figures
12, 13, and 14. In the early subsample, when oil price is the driving variable,
the transition function G has a slightly larger moderate slope of γ = 4.4 in
comparison to γ = 2.76 in case of technology prices. This indicates a smooth
but swifter transition of yt between the two regimes when oil price is the
regime driving variable. This behavior is confirmed from the dot plots of the
transition functions in Figures 15 and 16 in the case of oil and technology

11To render the slope of the transition function in Equation (5) scale free, the exponent
of the transition function G is divided by the standard deviation of the transition variable
σ̂s in all regressions.



prices respectively. For post Paris Agreement subsample, the transition
function G is plotted in Figure 17. The function has a moderate slope of
γ = 4.24 when the transition variable is sPSEt−1. Thus, the impact of the
one period lag change in technology stock prices on the cycle of clean energy
is smooth but slightly swifter after the Paris Agreement. The dynamic
analysis in the following section documents more interesting results about
the previous connections.



Table 5: Estimation and misspecification tests results pre and post the Paris
Agreement.

The STR1 model fitted to yt with sOILt as threshold variable pre-Paris Agreement
yt = −0.116

(0.008)
− 0.35
(0.04)

yt−1

+

(
0.122
(0.009)

+ 0.52
(0.04)

)
yt−1

 1

1+exp

{
− 4.4
(0.03)

(
sOILt+ 0.10

(0.0001)

)}
/0.0913

+ ε̂t,

R
2
= 0.69, σ̂OIL= 0.0913, σ̂2= 0.0047,

AUTO(1)†= 0.52, AUTO(4) = 0.44, AUTO(8) = 0.65,
ARCH(1)‡= 0.10, ARCH(4) = 0.16,
NRNL∗= 0.92, JB = 0.78, SK = 0.18, KU = 2.86.

The STR1 model fitted to yt with sPSEt as threshold variable pre-Paris Agreement
yt = −0.03

(0.03)
− 0.06
(0.04)

yt−1

+

(
0.09
(0.01)

+ 0.16
(0.03)

yt−1

) 1

1+exp

{
− 2.76
(0.04)

(
sPSEt− 0.05

(0.03)

)}
/0.0495

+ ε̂t,

R
2
= 0.64, σ̂PSE= 0.0495, σ̂2= 0.0048,

AUTO(1)†= 0.82, AUTO(4) = 0.37, AUTO(8) = 0.47,
ARCH(1)‡= 0.54, ARCH(4) = 0.65,
NRNL∗= 0.69, JB = 0.43, SK = 0.06, KU = 3.6.

The STR1 model fitted to yt with sPSEt−1 as threshold variable post Paris Agreement
yt = −0.41

(0.03)
yt−1

+

(
0.04
(0.03)

+ 0.63
(0.04)

yt−1

) 1

1+exp

{
− 4.24
(0.04)

(
sPSEt−1− 0.06

(0.04)

)}
/0.0518

+ ε̂t,

R
2
= 0.62, σ̂PSE= 0.0518, σ̂2= 0.0023,

AUTO(1)†= 0.25, AUTO(4) = 0.27, AUTO(8) = 0.14,
ARCH(1)‡= 0.87, ARCH(4) = 0.29,
NRNL∗= 0.81, JB = 0.77, SK = 0.25, KU = 2.97.

†AUTO(k) is p-value of Ljung and Box (1978) test of no serial correlation of order k.
‡ARCH(i) is p-value of Engle’s (1982) test of no ARCH of order i.
∗p-value of Eitrheim and Teräsvirta (1996) and Teräsvirta (1998)’s test of no remaining nonlinearity.
JB is the p-value of Jarque and Bera (1987) test. SK is skewness. KU is kurtosis.



Figure 9: Original series (solid line) and
fitted series (dashed line) of the clean
energy cycle yt when the percentage
change in oil price is the transition
variable over the period pre-Paris

Agreement.

Figure 10: Original series (solid line) and
fitted series (dashed line) of the clean
energy cycle yt when the percentage
change in technology stock prices is the
transition variable over the period

pre-Paris Agreement.

Figure 11: Original series (solid line) and
fitted series (dashed line) of the clean
energy cycle yt when the one period lag
percentage change in technology stock
prices is the transition variable over the

period post Paris Agreement.

Figure 12: The standardized residuals of
the STR1 model fitted to the cycle of
clean energy with the percentage change
in oil price as transition variable over the

period pre-Paris Agreement.



Figure 13: The standardized residuals
of the STR1 model fitted to the cycle of

clean energy with the percentage
change in technology stock prices as
transition variable over the period

pre-Paris Agreement.

Figure 14: The standardized residuals of
the STR1 model fitted to the cycle of
clean energy with the one period lag
percentage change in technology stock
prices as transition variable over the

period post Paris Agreement.

Figure 15: A plot of the transition
function G(γ, c; sOIL) of the STR1
model fitted to the clean energy cycle
when the percentage change in oil price
is the transition variable over the

period pre-Paris Agreement. Each dot
corresponds to one observation.

Figure 16: A plot of the transition
function G(γ, c; sPSE) of the STR1
model fitted to the clean energy cycle
when the percentage change in
technology prices is the transition
variable over the period pre-Paris
Agreement. Each dot corresponds to

one observation.



Figure 17: A plot of the transition function
G(γ, c; sPSEt− 1) of the STR1 model fitted to
the clean energy cycle when the one period lag
percentage change in technology prices is the
transition variable over the period post Paris
Agreement. Each dot corresponds to one

observation.

5.3 Dynamic analysis

In this section, we discuss the estimation results in Table 5 and presents a
dynamic analysis of the regime switching behavior of the clean energy cycle
in response to changes in crude oil price and technology stock prices before
and after the Paris Agreement. The discussion reveals the role played by this
agreement and the recent climate events in shaping the connection between
these asset classes. We document the results of the dynamic analysis in
Table 6. In what follows, we analyze the findings in Table 6 from two
perspectives. First, we compare the performance of the clean energy cycle
before and after the Paris Agreement with each driving variable; that is, we
compare the results in the second and third columns of Table 6. Second,
within each subsample, we compare the degree of persistence in the cycle
of clean energy in the lower and upper regimes following changes in each
regime-driving variable; that is, we compare the top and the bottom of each
column in Table 6.



As discussed earlier, the price of oil fails to capture the nonlinear oscilla-
tion in the cycle of clean energy assets after the Paris Agreement. However,
in the period pre-Paris Agreement, oil was the best transition variable that
can capture this nonlinear behavior. After controlling for carbon price,
policy uncertainty, and market volatility, the cycle of clean energy in this
subsample follows a stationary two-regime AR(1) model around a threshold
value c = −10% as documented in second column of Table 6. When the per-
centage change in the WTI crude oil index falls below the threshold value of
−10%, the cycle of the clean energy index, ECO, is pushed to a lower AR(1)
regime with a moderate negative autocorrelation coeffi cient ψ̂1 = −0.35;
that is,

sOILt < −10% =⇒ G = 0 =⇒ yt = −0.116− 0.35yt−1 + ε̂t. (14)

On the other hand, when sOILt > −10%, then G = 1 and yt moves to an
upper stationary regime with a relatively weaker positive autocorrelation
coeffi cient ψ̂1 + θ̂1 = 0.17;

sOILt > −10% =⇒ G = 1 =⇒ yt = 0.006 + 0.17yt−1 + ε̂t. (15)

Guided by the sign and magnitude of the autocorrelation coeffi cients in both
regimes, we deduce that oil price has a nonlinear asymmetric impact (in sign
and magnitude) on the cycle of ECO in this period. The degree of persis-
tence weakens in the upper regime. Figure 18 depicts the previous dynamic
behavior between the pervious time series. Notice how the transition func-
tion in panel c picks up the extreme drops in the percentage change in the
WTI crude oil price index (panel b) below the threshold value of -10% in
2010, 2012, and the collapse of crude oil price in July 2014, which was due
to the economic slowdown in several emerging economies, e.g., China and
India, and to the significant growth in North American oil production.
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Figure 18: The behavior of the clean energy cycle yt (panel a), the
threshold variable sOILt and the threshold value c = −10% (panel b), and
the transition function G (panel c) in the early period before the Paris

Agreement.

As for the impact of technology stock prices on the cycle of clean energy
assets, we document an asymmetric impact (in sign) in the early period;
namely, when technology stock prices spiral down below 5%, the cycle of
clean energy is pushed to a lower stationary AR(1) regime with a weak
negative autocorrelation coeffi cient of ψ̂1 = −0.06. Judging by the autocor-
relation coeffi cient of 0.10 in the upper regime, the persistence is still weak,
but relatively stronger compared to the lower regime. In post Paris Agree-
ment period, technology stock prices do not only lead oil prices in driving
the cyclical behavior of clean energy assets, but they also display an asym-
metric impact (in sign) and a stronger persistence in the regimes as opposed
to the period pre-Paris Agreement. The second and third columns at the
bottom of Table 6 summarize the previous characterizations of regimes.

In summary, by comparing the performance of the regime-driving vari-
ables pre and post the Paris Agreement, we deduce that oil price leads tech-
nology stock prices in the early period with a relatively strong asymmetric
persistence impact on the cycle of clean energy assets. The roles, however,
are reversed in the recent subsample after the Paris Agreement. In particu-
lar, technology stock prices take the lead with a strong asymmetric impact
on the cycle of clean energy assets. Oil price fails to capture the nonlinear-
ity of clean energy assets in this subsample. Thus, the connection between
technology stock prices and clean energy assets is strengthened over time



especially after the Paris Agreement. This behavior can also be detected
from the plots of the transition function in panel c, the regime-driving vari-
able, sPSE , in panel b, and the clean energy cycle in panel a before and
after the Paris Agreement in Figures 19 and 20 respectively. By comparing
the transition function in panel c in both figures, we notice that the oscilla-
tion between the two regimes is tamed in the recent period after the Paris
Agreement. This indicates the relatively strong persistence in both regimes
of the clean energy cycle in this period.

Panel a: Cycle of ECO pre Paris Agreement
2009 2010 2011 2012 2013 2014 20150.25

0.20
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Panel b: Transition variable and the threshold parameter pre Paris Agreement
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Figure 19: The behavior of the clean energy cycle yt (panel a), the
threshold variable sPSEt and the threshold value c = 5% (panel b), and the

transition function G (panel c) in the early period before the Paris
Agreement.

Panel a: Cycle of ECO post Paris Agreement
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Figure 20: The behavior of the clean energy cycle yt (panel a), the
threshold variable sPSEt−1 and the threshold value c = 6% (panel b), and
the transition function G (panel c) in the recent period after the Paris

Agreement.



Another way of looking at the dynamic results in Table 6 is to compare
the clean energy cycle within each subsample. By comparing the results at
the top and the bottom of the second column of Table 6, we find that the
AR(1) clean energy cycle displays a stronger negative (positive) autocorre-
lation in the lower (upper) regime when oil price is the driving variable as
opposed to technology stock prices; that is, before the Paris Agreement, a
fall in oil price has more negative impact on clean energy prices then a fall
in technology stock prices. One plausible explanation of this behavior is the
limited awareness of climate risks along with investors’perceptions of the
high risk of substitution from clean energy sources to conventional sources
that comes with a downward oil price spiral. This result also means that
the connection between clean energy prices and oil price is stronger than
that of technology stock prices in the period before the Paris Agreement.
The superiority of oil price is, however, completely absent after the Paris
Agreement. By comparing the results in the top and the bottom of the third
column of Table 6, we deduce that not only technology stock prices are the
dominant influencer on clean energy assets in this period, but they also have
a strong persistence on the clean energy cycle.

The previous analysis supports the argument that the rise in investors’
awareness that is brought by the announcement of the Paris Agreement and
the recent climate events is a major factor that has contributed to weakening
the connection between clean energy price and the price of crude oil. The
rationale here is that, in the absence of global efforts to combat climate
change, rising oil prices cause investors to shift their preferences to clean
energy companies because expensive oil prices encourage the substitution of
alternate clean sources for conventional energy sources. Global efforts like
the Paris Agreement or major climate crises tend to have positive impact
on investors’ awareness regarding the devastating risks of climate change
over time. The continuous increase in awareness over time will potentially
alter investors’preferences towards green instruments without the need for a
spike in oil prices to motivate the switch from conventional energy sources to
clean ones. In other words, the Paris Agreement and other similar climate
attempts ought to reduce (and potentially break) the positive association
between oil prices and clean energy prices. Thus, global efforts to combat
climate change are effective in reducing the effects of oil price movements on
clean energy markets. This result, which suggests a decoupling of the clean
energy sector from the conventional energy market, is consistent with the
one documented by Ferrer et al. (2018).



Table 6: The dynamic behavior of the upper and lower regimes of the clean
energy cycle with changes in oil and technology stock prices as exogenous
transition variables pre and post the Paris Agreement.
Dynamic analysis of yt Pre Paris Agreement Post Paris Agreement

Exogenous regime-driving variable is oil price
Threshold c : c = −10% NA∗

Transition variable s : sOILt= 4 log(WTIt) NA
Transition type: γ= 4.4 (moderate) NA
Residual variance: σ̂2= 0.0047 NA
Lower regime: s < c =⇒ yt= −0.116− 0.35yt−1+ε̂t NA

Autocorrelation coeffi cient: ψ̂1= −0.35 NA
Stationarity and model type: stationary AR(1) NA
Persistence (degree; sign): moderate negative NA
Mean of lower regime: Eyt = −0.086 NA

Variance of lower regime: var(yt) = σ̂2

1−ψ̂21
= 0.0054 NA

Upper regime: s > c =⇒ yt= 0.006 + 0.17yt−1+ε̂t NA

Autocorrelation coeffi cient: ψ̂1+ θ̂1 = 0.17 NA
Stationarity and model type: stationary AR(1) NA
Persistence (degree;sign): weak positive NA
Mean of upper regime: Eyt = 0.007 NA

Variance of upper regime: var(yt) = σ̂2

1−(ψ̂1+θ̂1)
2 = 0.0048 NA

Persistence between regimes: weakens from lower to upper
Asymmetry between regimes: in sign and magnitude NA

Exogenous regime-driving variable is technology stock prices
Threshold c : c = 5% c = 6%
Transition variable s : sPSEt= 4 log(PSEt) sPSEt−1= 4 log(PSEt−1)
Transition type: γ= 2.76 (moderate) γ= 4.24 (moderate)
Residual variance: σ̂2= 0.0048 σ̂2= 0.0023
Lower regime: s < c =⇒ yt= −0.03− 0.06yt−1+ε̂t yt= −0.41yt−1+ε̂t
Autocorrelation coeffi cient: ψ̂1= −0.06 ψ̂1= −0.41
Stationarity and model type: stationary AR(1) stationary AR(1)
Persistence (degree; sign): weak; negative moderate; negative
Mean of lower regime: Eyt = −0.086 Eyt = 0

Variance of lower regime: var(yt) = σ̂2

1−ψ̂21
= 0.0054 var(yt) = 0.0028

Upper regime: s > c =⇒ yt= 0.06 + 0.10yt−1+ε̂t yt= 0.04 + 0.22yt−1+ε̂t
Autocorrelation coeffi cient: ψ̂1+ θ̂1 = 0.10 ψ̂1+ θ̂1 = 0.22
Stationarity and model type: stationary AR(1) stationary AR(1)
Persistence (degree and sign): weak; positive moderate; positive
Mean of upper regime: Eyt = 0.007 Eyt = 0.051

Variance of upper regime: var(yt) = σ̂2

1−(ψ̂1+θ̂1)
2 = 0.0048 var(yt) = 0.0024

Change in persistence between regimes: no significant change no significant change
Asymmetry between regimes: in sign only in sign only
*Not Applicable.



6 Conclusions and policy recommendations

Investors are becoming more aware of climate risks and the attention to
green investments is more noticeable in the recent period post Paris Agree-
ment. In this paper, we investigate the connection between clean energy
prices and oil and technology stock prices before (January 2009 - February
2016) and after (March 2016 - December 2019) the Paris Agreement. Us-
ing a nonlinear STR model, we test the exogenous impact of oil price and
technology stock prices on the cycle of the ECO index after controlling for
carbon price, market volatility, and policy uncertainty. In addition to the
exogenous causality, we also test the hypothesis of whether the Paris Agree-
ment and the recent climate-related events around the globe are contributing
to shaping these connections. To this end, we use Google Trends’monthly
Search Volume Index for the worldwide search terms "Paris Agreement,"
"Climate Risk," "Green Investment," "Green Bonds," and "Invesco Clean
energy ETF," and find a rise in investors’attention to the risks and rewards
of climate change especially in the period post Paris Agreement. We repeat
the same search analysis in the U.S. and reach the same conclusion. We then
confirm the robustness of this result by employing a structural break test to
the cycle of the clean energy index over the entire analysis period (January
2009 - December 2019). We document a breakpoint in February 2016; right
after the signing of the Paris Agreement in December 2015. Guided by the
previous analysis, we fit the STR model to the cycle of clean energy before
and after the breakpoint. We document the following results.

First, the results of the nonlinearity tests over the entire analysis pe-
riod reveal that changes in oil price and technology stock prices are the
best regime-driving variables of the cyclical behavior of clean energy assets.
The previous finding confirms the existence of exogenous one-way direc-
tional causality from oil and technology stock prices to clean energy prices;
changes in these two asset classes drive the cyclical behavior of clean energy
prices. Focusing on the period before the Paris Agreement, we confirm once
again this one-directional causality with crude oil prices leading technology
stock prices in capturing the cyclical behavior of clean energy assets. This
nonlinear exogenous causality, albeit from a different perspective than the
conventional Granger causality of VAR specifications, is consistent with the
consensus in the early literature on these connections (e.g., Dutta et al.,
2020; Henriques and Sadorsky, 2008; Kocaarslan and Soytas, 2019; Kumar
et al., 2012; Managi and Okimoto, 2013; Reboredo, 2015; Sadorsky, 2012;
among others).

Second, we find that the connection between clean energy prices and



crude oil prices is weaker in the period after the Paris Agreement. In fact,
we show that the price of crude oil has no impact on the cycle of clean
energy during this recent period. This finding is consistent with several
recent studies that document weak association between the stock prices of
clean energy companies and the price of crude oil (e.g., Dutta et al., 2020;
Elie et al., 2019; Ferrer et al., 2018; Nasreen et al., 2020). It is also consistent
with the prediction that, in the recent period, technology stock prices are
the dominant influencer on the crude oil price (Yahya et al., 2021).

Third, we show that the impact of technology stock prices on the cycle of
clean energy assets is stronger after the Paris Agreement. More specifically,
we find that the degree of persistence in the two autoregressive regimes of
the cycle of clean energy is relatively stronger in this period. We find the
existence of a nonlinear asymmetric persistence in the cycle of clean energy
assets after the Paris Agreement when technology stock prices are the driving
variables. Moreover, we show that this persistence is relatively stronger
in this period. Finally, the superiority of technology stock prices over oil
prices in driving the cyclical behavior of clean energy assets supports our
argument that the Paris Agreement and other recent climate-related events
are contributing to increasing investors’awareness regarding climate risks
and the noticeable shift in preference towards green instruments. We are
the first to bring the effect of the Paris Agreement and investors’awareness
to the discussion on these connections.

In the present analysis, we demonstrate that the connection between
clean energy and technology stock prices is stronger, and the oil-clean energy
connection is absent post Paris Agreement. We argue that the recent rise
in investors’ awareness amid the Paris Agreement and the recent climate
events is contributing to this behavior of the clean energy-oil-technology
nexus. However, we acknowledge the role played by other factors such as
carbon price, economic policy, and market uncertainty, in impacting this
connection. While we control for these factors in our analysis, and we bring
investors’awareness of climate risks as a plausible explanation to the recent
decoupling of the clean energy sector from the traditional energy market, it
is worth noting that our analysis does not include any variable that directly
capture investors’awareness. Investigating the direct impact of investors’
awareness on these connections is a potential area for future research on the
subject.

The results of this paper have significant implications for investors and
other stakeholders in the energy sector and, specifically, for climate mit-
igation and adaptations policies. Global efforts like the Paris Agreement
have positive impact on investors’awareness regarding the devastating risks



of climate change. The continuous increase in awareness over time will
potentially alter investors’preferences towards green instruments without
the need for a spike in oil prices to motivate the switch from conventional
energy courses to clean ones. Hence, breaking, eventually, the connection
between oil price and clean energy prices. Weakening the oil price-clean
energy prices connection is indeed good news for the battle against climate
change. However, policy makers, regulators, and key players in financial
markets need to increase their efforts to effectively break this connection.
While global institutions such as the World Bank are already working on
creating more effective green solutions across asset classes, these solutions
have been mainly focused on the fixed income class of assets, e.g., green
bonds, cool bonds, and eco notes (Reichelt, 2010). Innovative solutions,
however, that create more awareness in other asset classes, e.g., domestic
and foreign equities, are needed. Many investors are not aware of the carbon
footprint and the climate impact of the companies in their portfolios. Few
investors who hold oil and gas stocks in their portfolios are aware of the risk
they face with respect to those companies’stranded assets (Anderson et al.,
2016). Despite the unanimous agreement on climate change following the
Paris Agreement, climate risk remains unpriced by the market and, thus,
future uncertainty about climate risk remains an increasingly important risk
factor for investors, particularly long-term investors. CEO’s of private com-
panies should increase their efforts to reduce the carbon footprints of their
products and, more importantly, to provide investors with clear signals and
transparent rules of how this reduction is done. Fund and portfolio man-
agers should focus on factoring climate risks in their portfolios and design
hedging policies that aim at lowering the risk exposure to climate events
without compromising the rewards of the portfolios (Anderson et al., 2016).

In conclusion, although more needs to be done, breaking the dependency
of clean energy prices on oil price movements is not out of reach. The present
analysis demonstrates that a global collective commitment to climate miti-
gation and adaptation efforts from all parties involved ought to, eventually,
break this connection and achieve stability in financial and energy markets.
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