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Abstract 

 

Researchers and policy makers point to product market competition as a mean to improve 

corporate environmental policy, encouraging firms to compete over customers with high 

environmental awareness. Unfortunately, many environmentally important industries sell their 

output through centralized markets, making it hard for customers to differentiate across firms. We 

show that in these cases competition affects environmental policy through its impact on firms’ 

incentives to become more efficient. Depending on available technology, the effect can have both 

positive and negative impact on the environment. We empirically establish both effects using 

fossil-fuel plants in the US electric utility industry. 
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Recent studies have shown that market forces play a significant role in promoting 

environmental policies among firms, which can ultimately substitute for regulation. A particular 

emphasis has been put on product market competition (hereafter, PMC), which incentivizes firms 

to compete over customers with high levels of sustainability awareness. A large body of literature 

has demonstrated that in a competitive environment firms differentiate their product by becoming 

environmentally friendly in order to increase consumer demand and their profits (Aghion, 

Benabou, Martin, and Roulet, 2020; Flammer, 2015; Duanmu, Bu, and Pittman, 2018; Delmas, 

Russo, and Montes-Sancho, 2007; Servaes and Tamayo, 2013).  

A necessary condition for the effectiveness of the differentiation channel is that customers 

can distinguish between environmentally friendly and non-friendly suppliers. Unfortunately, for 

products in the most polluting industries, customers can have a hard time contracting their demand 

on the type of supplier. The reason is that products in polluting industries are often commodities 

that trade in centralized spot and futures wholesale markets (e.g., agriculture and energy) – where, 

for efficiency reasons, exchanges and contracts are unified and based on product quality 

characteristics rather than suppliers’ environmental impact. Another reason is that products in 

polluting industries are often transported through complex distribution systems that rely on system 

of grids, pipelines, transportation networks etc. The delivery of the product through such 

centralized system can provide another obstacle for the customer to be matched with 

environmentally friendly supplier.3  

 
3 Theoretically, it is possible to set up contracts based on environmental characteristics of suppliers. However, 

implementing such contracts is costly, especially when the customers cannot differentiate among suppliers by simply 

examining the final product. For example, if a customer wants to buy oil that wasn’t produced using fracking 

technologies, he needs a certification from the distributor that oil delivered is not based on fracking.  To provide such 

certificate, the distributor will then have to set up a verification mechanism that (a) ensures that the oil delivered was 

bought from a particular supplier and (b) the supplier has, indeed, not used fracking technologies in the extraction 

process. The absence of such certifications in reality suggest that will be costly to implement.  
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How does product market competition promote corporate environmental policy when firms 

cannot single themselves out as environmentally friendly suppliers? Absent direct incentives to 

cater to environmentally friendly customers it is not clear that PMC will positively affect 

environmental policy. In fact, since a competitive environment raises the pressure to cut costs, and 

environmental policy is often costly to implement, it could lead to worse environmental policy.  

In this study we analyze the impact of PMC on corporate environmental policy when firms 

cannot differentiate themselves as environmentally friendly producers. We show that PMC forces 

firms to become more efficient and then study the effect of the efficiency channel on environmental 

policy. To this end, we decompose efficiency into within-firm actions to reduce input per output 

produced (cost-cutting) and the effect of competition on efficient allocation of production across 

competing firms (efficient allocation of resources). We then ask how each of these channels affects 

environmental policy.4  

First, we consider the cost-cutting channel. According to economics literature, protecting 

the environment is costly. Therefore, cost-minimizing production policy is often associated with 

less environmentally friendly policy. However, at the same time, more efficient production 

processes also make a better use of production factors, generating more output for a given amount 

of input used. It is therefore possible that product market competition will lead to higher protection 

of the environment by simply making the production process more efficient. We therefore argue 

that cost-cutting considerations could have either a negative or a positive effect on environmental 

policy.  

 
4 An additional effect of competition is through higher levels of production due to increased demand in response to 

lower prices in competitive environment. In the empirical setting we consider the demand is highly inelastic, so this 

is not a concern.  
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The second effect is the effect of product market competition on allocation of production 

across competing entities. Competition is known to alter production decisions across firms in a 

way that re-allocates production from overloaded units with high marginal costs towards 

underloaded units with lower marginal costs. Such shift will reduce the average amount of input 

needed per unit of production.5 To the extent that environmental impact of a firm is an increasing 

function of the total input amount used, the efficient allocation of resources across firms will have 

a positive impact on the environment.  

After establishing the conceptual framework, we turn to empirically gauging the 

environmental impact of the efficiency channels of competition. Analyzing the effect of increased 

efficiency on environmental policy is empirically challenging for several reasons. First, we need 

to identify the space of potential actions that firms can take to become environmentally friendly. 

Second, we need to be able to quantify the costs and benefits that each action entails. Third, we 

need to disentangle efficiency incentives driven by product market competition from other 

economic forces that affect corporate sustainability.  

We address the empirical challenges by focusing on fossil-fuel plants in the US electric 

utility industry – the nation’s largest emitter of toxic chemicals and greenhouse gases. This 

industry set-up provides numerous advantages, allowing us to overcome each of the empirical 

challenges above. First, electric generation process is homogeneous across fossil-fuel plants. As a 

result, the space of all possible production and investment decisions that, in turn, affect the 

environment is well-understood. Second, data regarding corporate decisions in this industry are 

rich and detailed, allowing us to quantify the benefits and costs of each action. Specifically, we 

are able to obtain plant-level data of public and private plants, including quantities and prices of 

 
5 Consider, for example, opening markets to international competition. If country-level demand shocks are imperfectly 

correlated, competition will help allocate excess supply in one country to meet excess demand in another country.   
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inputs and outputs. We can also measure environmental policy in a precise manner by focusing on 

pollution levels and pollution abatement expenses. Third, we take advantage of the staggered 

passage of restructuring across US utilities during the 1990s which has opened the market to 

competition. This setup mitigates endogeneity concerns and allows us to identify cause and effect 

between efficiency incentives and pollution. Finally, electric utility industry is a classic example 

of a setup where customers have a hard time differentiating among different suppliers. In the pre-

restructuring environment, every plant operated as a local monopoly, so that customers could not 

choose their provider. In the restructured supply system, power plants sell electricity through a 

centralized market mechanism such as power exchange. As a result, final customers do not know 

the identity of suppliers that they receive their electricity from, and often times the electricity 

received comes from multiple different providers.6 

We next use the uniquely detailed data of utilities to empirically establish the existence of 

each competition-driven efficiency channel. For the cost-cutting channel, the technology of 

electricity generation permits plant managers to undertake three types of efficiency-enhancing 

actions that also have an environmental impact: (i) cutting pollution abatement; (ii) changing input 

mix towards cheaper input factors; and (iii) increasing production efficiency (i.e., lower energy 

input per unit of electricity generation produced). To establish the efficient allocation of resources 

channel we examine plants’ capacity factor: the ratio of total net energy produced by the plant to 

its maximal capacity.  Electric utilities operating at close to maximum capacity sustain higher costs 

and cannot compete with utilities that operate below full capacity. We ask whether the 

 
6 While all restructured states have allowed electricity generators to compete in the wholesale market, a very small 

portion have also opened their markets to retail sales access, which would enable end-users to choose their electricity 

providers. Excluding these cases does not affect our results.  
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restructuring has reduced plants’ capacity factor in a way that also resulted in reduced the amount 

of input per output produced.  

Our findings support the cost cutting incentive channel. We find a significant cut in 

abatement expenses and abatement investment in restructured states compared with non-

restructured states. For the average plant in the restructured states, investment in pollution-

reducing equipment decreased by 55% following the restructuring, as compared with plants in 

nonrestructured states. Additionally, plants in restructured states decreased their overall abatement 

expenses by 35% as compared with plants in nonrestructured states.  

Additionally, we find that plants in restructured states have increased their efficiency by 

switching to a cheaper input mix. In the case of electric utilities, fuel is the main input, and fossil-

fuel plants employ three main inputs: petroleum (the most expensive), gas, and coal (the cheapest 

fuel during our sample period). We find that the affected plants shifted from oil towards cheaper 

fuels - natural gas and coal. In addition, plants increased their reliance on cheaper, but more 

polluting types of coal. To further pinpoint the cost-cutting mechanism, we explore the sensitivity 

of the affected plants’ fuel choice to their pre-restructuring production costs. We find that the 

tendency of plants in restructured states to adopt cost-efficient fuels increased among affected 

plants whose cost structure was particularly high prior to restructuring.  

Our third finding is that plant production efficiency, as measured by the ratio between 

electricity output and heat input, increased in restructured states in comparison to plants in 

nonrestructured states.  

Our fourth and last evidence supports the efficient allocation of resources channel. 

Specifically, we establish that the actual energy production relative to the total plant capacity 

(known as capacity factor) declined in affected plants, which is consistent with the argument that 
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competition led to a reduction in the production of local plants with overcapacity in favor of 

incumbent competing plants. We also find that the decrease in the capacity factor following 

restructuring explains the improvement in the efficiency gap between restructured plants and 

regulated plants. 

After establishing the existence of efficiency gains, we next analyze their impact on the 

environment. The total impact of PMC on pollution is a-priori unclear, since, as indicated earlier, 

efficiency channels could have either a positive or a negative impact on the environment. On the 

one side, reduction in abatement and switch to more polluting coal should translate into a negative 

impact of competition on environment. On the other side, higher reliance on natural gas, as well 

as improved production efficiency both within and across plants should have a positive impact on 

environment. 

To gauge the prediction regarding the impact of the efficiency channels of product market 

competition on emission in an unambiguous way, we divide the sample into subsets of plants, so 

that within each subset we can precisely predict the impact of each channel on emission.  To that 

end, we first examine all the plants that do not have the capacity to use coal. For those plants, the 

change in fuel mix channel predicts that they will switch from petroleum to gas. As a result, the 

change in fuel mix will also reduce emission as a byproduct. We then contrast these predictions 

with the predictions regarding the second group - plants that have the capacity to switch to coal. 

For the second group, the fuel mix channel predicts an increase in pollution due to the move 

towards coal, as well the move towards more polluting types of coal. We therefore expect the 

impact of PMC on emission to be less positive (more negative) among coal plants compared to 

non-coal operating plants. 
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To empirically test these predictions, we estimate the amount of pollution as a function of 

the restructuring dummy. Consistent with our priors, we find a positive and statistically significant 

effect of restructuring on the amount of emitted toxic chemicals among coal operating plants, and 

negative and significant – among non-coal operating plants. Next, we test whether the previously 

established efficiency channels are behind this relation and augment the pollution specification 

with the vector of efficiency variables, discussed above. We find that after including these 

variables, the coefficient on the restructuring variable loses its significance and its magnitude 

declines by 75%-90% compared to the previous result. In addition, we find that among all the 

efficiency channels, the changes in fuel mix and the capacity factor are the dominant factors in 

explaining emission. 

We also ensure that our results are not driven by omitted variables correlated with both the 

restructuring and increased efficiency. We perform a parallel trend test and show that the level of 

input per unit of electricity produced has declined starting at the restructuring year, but not prior 

to that, in line with the predictions regarding the effect of competition on efficiency. We also show 

that the average amount of electricity produced by the affected plants has declined starting at the 

restructuring year, consistent with the increased supply of electric providers due to competition. 

Finally, we explore differences between Independently Owned Utilities (IOUs) and Municipal 

Utilities (Munis) within states; primarily, the latter were largely exempt from restructuring. Indeed, 

we find that Munis did not increase either their efficiency or their production following the 

restructuring.  

Our finding that the impact of competition on pollution varies depending on the available 

production technology further alleviates concerns regarding alternative causes for the change in 

pollution in utilities in restructured states. In particular, if state characteristics were to drive the 
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results, then the effect on pollution strategy would not vary depending on technology. We also 

show that within a given state, investor-owned utilities (IOUs), which were more affected by the 

regulations, had larger changes in their strategy compared with federal or municipality-owned 

utilities that were not subject to the regulation (Munis). If state characteristics were to drive the 

results, then change in strategy would have been similar between IOUs and Munis. 

The differential effect of competition on pollution across affected plants is also inconsistent 

with the legal channel. Restructuring legislation requires major changes in rulings, therefore its 

passage may potentially open the industry to litigations, some of which could be established on 

the grounds of environmental concerns. To the extent that restructuring exposes utilities to new 

legal threats, affected utilities may try to mitigate the legal risks by becoming more 

environmentally friendly.7 However, our results that plants that rely primarily on coal have actually 

increased their pollution by decreasing abatement expenses and relying more pollutive coal stand 

in contrast to the argument that utilities try to mitigate legal risks by becoming more 

environmentally friendly. 

Another potentially instrumental economic channel is the investor channel. If restructuring 

has attracted more environmentally friendly investor clientele, then that clientele may demand 

pollution reduction. Again, we note that this channel cannot explain the cross-sectional variations 

in environmental policy across plants found in our study. Moreover, long-term investors who place 

the highest value on environmentally friendly policies (Starks et al., 2017), are shown to be 

attracted to regulated utilities (e.g., Brochet et al., 2012). 

Our study contributes to emerging finance research that studies the drivers of corporate 

environmental policy. Past contributions include the effect of limited liability (Akey and Appel, 

 
7 In addition, regulators may act favorably towards firms if they observe that they are environmentally friendly. For 

example, Hong et al. (2019) find that regulators favor socially responsible firms and view them as more reputable.  
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2020a), legal risk (Ben-David et al., 2020); shareholder preferences (Naaraayanan et al., 2020; 

Akey and Appel, 2020b; Shive and Forster, 2019); and financial constraints (Bartram et al., 2019; 

Xu and Kim, 2020; Goetz, 2019). This paper augments the above literature by examining the role 

of cost-cutting incentives and product market competition on corporate environmental policy. The 

effect of product market competition on corporate environmental decisions is of particular 

relevance due to the tendency of competition to motivate cost cutting and increase the focus on 

profitability, which may be implemented at the expense of environmental protection (Friedman, 

1970). We highlight the claim that cost-cutting incentives can bring about lower negative 

externalities. In our setting, regulated utilities had fewer incentives to adopt new, more cost-

efficient production; higher pollution was the byproduct of this inefficiency. We also show a 

potentially important side effect of competition largely overlooked in the literature: Product market 

competition can lead to more efficient allocation of resources across competing plants which, in 

turn, further reduces the negative impact of corporate production activity on the environment. 

Our work also belongs to a growing strand of finance literature whose methodology entails 

placing a single industry at the core of its empirical design to provide precise inferences regarding 

the forces that shape corporate policies (e.g., Benmelech, 2009; Benmelech and Bergman, 2011; 

Gilje et al., 2020; Decaire et al., 2020). Detailed and precise empirical setting is critical for a study 

of corporate environmental activity, because a change to environmental policy may be attributed 

to different economic channels. The detailed production-level data allow us to distinguish among 

those channels. In particular, observing the costs and benefits of different production processes for 

each plant is crucial for concluding that the observed environmental policies are a by-product of 

cost-efficient production processes.  
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Finally, a number of finance papers have recently pointed out a trend in the form of an 

increase in product market concentration and a decline in competition in the US (Grullon et al., 

2019; Gutierrez and Philippon, 2019), which, in turn, has implications for investment (Barkai 

2019), labor markets (Benmelech et al., 2018), and entrepreneurship (Decker et al., 2014, 2016)). 

Our work contributes to this strand of research by exploring environmental implications of changes 

in a competitive landscape. We thereby offer another channel through which industry 

consolidation may affect stakeholders.  

The rest of the study continues as follows. Section 2 provides a summary of the electric 

utility industry and its restructuring. Section 3 presents the data and Section 4 reports the results. 

Section 5 examines the findings in light of the different hypotheses and Section 6 concludes. 

 

2. The Electric Utility Industry in the US 

This section provides a brief summary of the US electric utility industry. It consists of an 

explanation of how electricity is generated (Section 2.1) and how the electricity generation process 

affects the environment (Section 2.2). Section 2.3 describes the restructuring process of electric 

utilities in the US. 

 

2.1 Electric Generation  

The focus of our study is steam turbine electric plants that are powered by fossil fuel. This 

type of plant was responsible for generating approximately 70% of all US electricity during our 

sample period.  

The basic process of electricity generation starts with burning fossil fuels to heat a boiler 

and create steam to rotate a turbine. The turbine is connected to a generator that rotates through 

opposing magnetic fields. The rotation induces the flow of electricity, which then travels to its 
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final destination through a network of power grids. The steam that leaves the turbine is cooled and 

fed into the boiler again.  

Plants differ in their modes of operation. Base load power plants usually provide a 

continuous supply of electricity throughout the year with minimum power generation requirement. 

These plants are often larger and tend to be cheaper to operate. Peaking power plants are often 

smaller and run only during peak hours of electricity demand. 

Three main types of fossil fuels are used to generate heat in steam turbine electric plants: 

coal, petroleum, and gas. These fossil fuels differ in their heat content as measured by the amount 

of fossil fuel required to generate one unit of heat.  Fossil fuels also differ in cost and environmental 

impact.  

 

2.2 Environmental Concerns and Environmental Regulation 

The main environmental concern associated with steam generating plants is the hazardous 

byproducts emitted when burning fossil fuels.8 A chief byproduct is sulfur dioxide (SO2), which 

causes acid rain proven harmful to plants and to animals that live in water. SO2 also worsens 

respiratory illnesses and heart diseases in humans. Another hazardous byproduct is nitrogen oxides 

(NOx), which contribute to ground-level ozone and irritate and damage human lungs. Third, 

burning fossil fuels emits the poisonous gas carbon monoxide (CO), as well as particulate matter 

(PM), which results in hazy conditions in cities and scenic areas. Coupled with ozone, PM 

contributes to asthma and chronic bronchitis, especially in children and the elderly. In addition, 

 
8 Other environmental concerns include (i) the use of water resources to produce steam, provide cooling, and serve 

other functions; (ii) discharges of pollution into water bodies, including thermal pollution (water that is hotter than the 

original temperature of the water body); (iii) generation of solid waste, which may include hazardous waste;(iv)  land 

use for fuel production, power generation, and transmission and distribution lines; and (v) harmful effects on plants, 

animals, and ecosystems that result from the air, water, waste, and land impacts above. 

https://simple.wikipedia.org/wiki/Electricity
https://simple.wikipedia.org/wiki/Electricity_generation
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burning fossil fuels emits small amounts of heavy metals such as mercury, which are hazardous to 

human and animal health. Finally, electric plants emit large quantities of carbon dioxide (CO2). 

While not as toxic as other byproducts, CO2 contributes to the greenhouse effect responsible for 

global warming. 

Among the three fuels used for steam power-plants operation, coal has the most damaging 

emissions content, followed by petroleum and natural gas. For example, burning coal to generate 

one billion British Thermal Units (BBTU) of heat is associated with approximately 2,600 pounds 

of SO2. A typical power plant uses 22,000 BBTU per year, resulting in approximately 57 million 

pounds of SO2. In contrast, generation of the one BBTU of heat by burning petroleum is associated 

with 1,122 pounds of SO2. Finally, burning natural gas is associated with one pound of SO2 for one 

BBTU. 

To mitigate the environmental effects of burning fuel, electric plants can employ three main 

strategies. First, they can adopt less polluting fossil fuel: rely on natural gas or less pollutive coal, 

or pretreat the coal. Second, plants can capture the flue gas during the fuel burning process. 

Capturing the pollutants can be done in several ways, but the most efficient one requires an 

apparatus called a flue-gas desulfurization unit (FGD), or scrubber. Scrubbers remove about 90% 

of the pollution in the flue gas, but are expensive (Baasel, 1988). Third, plants can increase 

efficiency, resulting in less fuel required to produce the same amount of electricity. Efficiency can 

be increased, for example, by replacing older equipment with newer boilers, turbines, and 

generators. 

Electric utilities are required to abide by the emissions standards of the Clean Air Act, 

which the US introduced in 1970 and significantly amended in 1990. The most relevant 

amendment for electric utilities was Title IV, which was specifically directed at SO2 and NOx 
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emissions from utility power plants. The amendment was implemented in two phases: Phase I, 

which became effective January 1, 1995, required 110 listed power plants of greater than 100 MW 

electrical capacity and with high emissions levels to considerably reduce their emissions (“Table 

1 Units”).9 Phase II, implemented in 2000, targeted all units with capacity of at least 75 MW. Phase 

II has affected the majority of US electric plants. 

 

2.3 Restructuring of the Electric Utility Industry 

This subsection briefly summarizes the restructuring process of the electric utility industry 

in the US. For more detailed explanations see, e.g., Warwick (2002) and Joskow (1997).   

Historically, electric utilities operated mostly as vertically-integrated regulated 

monopolies, owning generation, transmission, and distribution of electricity within their localized 

geographic market. The majority of plants in the US are owned by private investors and denoted 

as investor-owned utilities (IOU’s). A minority of the plants are owned by the public government 

or local municipalities, as well as member-owned cooperatives across municipalities (Munis).  

State regulators set the price of electricity based on utility costs in a process called a rate 

case, a lengthy and complex procedure for determining both the electricity price level and the price 

design. A rate case can be initiated by either the local public utility commission (PUC) or by the 

utility itself. A utility generally initiates a rate case only when it needs to increase revenues or 

believes that it needs a higher rate of return to attract investment capital. The PUC will initiate a 

rate case if it believes rates are in excess of their cost of service or cost of capital. Rate cases are 

examined by the regulator on a periodic basis, usually every several years. 

 
9 Those units were referred to as “Table 1 units” because they were listed in Table 1 of the allowance allocation 

regulation, 40 CFR 73.10. Additional 182 units were allowed to substitute for “Table 1 Units” in reducing overall 

utility emissions levels. 
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By the early 1990s it became apparent that electric industry regulatory approaches were 

not working. The demand for electricity increased, attempts to build new plants faced regulatory 

constraints, and the regulatory process was time-consuming and expensive. As a result, states 

began adopting different versions of industry restructuring in the early 1990s. The restructuring 

involved opening the electricity utilities to competition both within the state and outside the state.  

In the restructured supply system, generation and distribution became unbundled and power plants 

were free to compete with each other through a market mechanism to sell electricity to distributors 

or customers. Purchasing of power is done via market mechanisms like the power exchange, and 

transmission scheduling is conducted by an independent body known as the Independent System 

Operator (ISO). 

Between 1990 and 1999, a total of 23 states plus the District of Columbia restructured their 

electric utility industry. The regulation affected primarily the IOUs. Munis were not compelled to 

restructure and were permitted to rely on their own production and distribution systems in their 

own localized markets. 

Numerous studies have shown a positive effect of the restructuring on cost-cutting actions 

and improved efficiency of utility plants. For example, Fabrizio et al. (2007) show that plants have 

decreased non-fuel costs after the restructuring, whereas Bushnell and Wolfram (2005) and Davis 

and Wolfram (2012) show that plants have increased their output-to-input efficiency. 

In addition, the economics literature analyzing the competitiveness of the electricity 

industry after restructuring has established that electricity price levels have generally become 

competitive (see, e.g., the Federal Energy Regulatory Commission (FERC) report to Congress, 

2011). Davis and Bushnell et al. (2017) conclude that “despite the notable isolated failures of 
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competition, U.S. electricity markets are now found to be reasonably competitive overall…” (page 

2).  

 

3. Data 

The main dataset for the analysis consists of annual plant-level data of fossil-fuel generated 

electric utilities in the US. The dataset combines three different sources: EIA, Utility Data Institute 

(UDI), and EPA, as described below.  

Our main source of information is the US Energy Information Administration (EIA). EIA 

is a statistical and analytical agency within the US Department of Energy, which collects 

comprehensive data covering a full spectrum of elements related to the energy generation process, 

including sources, uses, technologies, and distribution. The information is usually available at a 

plant level.10  

The majority of the EIA information in our project comes from Form EIA-767. 

Specifically, the data on capital investment in pollution abatement as well as expenditures 

associated with the collection and disposal of byproducts during the generation process, are 

obtained from Form EIA-767 files. Information on boilers (installation date and primary fuels 

type), as well as the information on the use of flue-gas desulfurization (FGD) equipment (including 

its installation date), are also collected from this form. Next, we include data on quantities of fuel 

by fuel type (coal, natural gas, or petroleum). This information is collected in Form EIA-423 and 

is available at monthly frequency (we sum up monthly fuel use by each fuel type within each 

 
10 Some reports provide more granular information (e.g., at a unit, boiler, or generator level). In these cases, we 

aggregate information at a plant level; the data are available online at www.eia.gov and are categorized into topics 

(each topic corresponds to a specific form the plant needs to fill out). 
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calendar year).  Finally, we rely on Form EIA-861 to obtain information on electricity sales and 

prices, which we also convert into annual frequency.  

The second dataset is collected from the Utility Data Institute (UDI) Operations and 

Maintenance (O&M) Production Cost Database, which combines data from the following publicly 

available resources: The Federal Energy Regulatory Commission (FERC); the US Energy 

Information Administration (EIA); and the Rural Utilities Service (RUS). The dataset contains 

basic plant characteristics such as plant ownership, age, location, and capacity. The dataset 

additionally contains additional production-related factors, including (i) energy output measured 

in net Megawatt hours (MWh); (ii) energy input measured in British thermal units (BTUs) of fuel 

consumption; (iii) number of employees; (iv) fuel; and (v) nonfuel expenses. Nonfuel expenses 

primarily consist of operation and maintenance expenses, as well as wage and salary expenses. 

Fabrizio et al. (2007) have combined these variables into one dataset and have made it available 

for researchers. Their data spans the period 1981–1999 and contains all large fossil-fuel steam and 

combined-cycle gas turbine generating plants with a capacity of 100 megawatt hours (MWh) and 

higher10  

Finally, we obtain emissions data from the Environmental Protection Agency (EPA).  

Electric utilities are required by law to monitor and disclose their emission levels. Within the EPA 

platform, our emission data comes from two sources. First, we rely on data from the Emissions & 

Generation Resource Integrated Database (eGRID). The eGRID database is based on plant-

specific data for all US electricity generating plants that provide power to the electric grid and 

report data to the US government. The information on emissions starts from 1996 and, according 

to the EPA, is a comprehensive source of data on the environmental characteristics of almost all 

electric power generated in the US. Data reported include mass emissions of carbon dioxide (CO2), 
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nitrogen oxides (NOx), sulfur dioxide (SO2), and other chemicals. The eGRID database reports 

this information on an annual basis and at different levels of aggregation, namely plant, state, and 

grid regions of the country.11  Because plant production and plant emissions datasets both rely on 

the same type of plant identifier, namely the Office of Regulatory Information Systems Plant 

Location (ORISPL), merging the EPA and EIA databases is straightforward. 

Although eGRID provides detailed information with respect to plant emissions, it does not 

cover the pre-restructuring years for most states. Therefore, the concern arises that the resulting 

time-series is too short to capture emission patterns of utility plants prior to the restructuring to a 

meaningful degree. To extend the time-series, we supplement the eGRID information with 

historical information on emissions from a different platform, Air Markets Program Data (AMPD), 

which is also managed by the EPA.12 Because SO2 is one of the principal byproducts of fossil fuel 

burning and is considered a major threat to human health and to the environment, the US 

government began gathering SO2 emissions data as early as the 1980s. AMPD provides 

information on emission levels of SO2 for the years 1980, 1985, 1990, and annually from 1995. 

We therefore combine our eGrid data with information on SO2 emissions for the years 1985, 1990, 

and 1995.13 The only complete available data are for SO2 emissions, therefore we focus on this 

pollutant in our analysis. However, as we will elaborate in the analysis section, our findings extend 

also to other chemicals involved in the production of electricity. Overall, for the 599 facilities that 

appear in the Fabrizio et al. (2007) dataset in all the years that overlap with EPA data we were able 

to find data on 572 facilities with nonmissing SO2 information in the eGRID or Air Markets 

Program datasets. 

 
11 https://www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid. 
12 https://ampd.epa.gov/ampd/. 
13 Air Markets Program Data also reports statistics on NOx, but these data start in 1995. We therefore focus our 

analysis on SO2 pollution. 



18 
 

Table 1 summarizes key variables in our sample. An average plant generates approximately 

3.4 terawatt-hours of electricity a year, so that the combined production of our sample plants 

accounts for close to 60% of the total electricity generated in the United States during that time. 

Consistent with the fact that only a small fraction of municipal utilities has a capacity of 100 MW 

and higher, 80% of our plants are investor-owned. Regarding emissions, plants allocate on average 

around $2 million a year on pollution abatement activities; however, significant variation occurs 

across plants. Finally, our plants also differ substantially in the types of input they use. An average 

plant uses coal as the primary fuel in two-thirds of its operating boilers, compared to 27% and 11% 

reliance on gas and petroleum, respectively. 

 

3.1 Restructuring 

 

The restructuring reform affected 23 states plus the District of Columbia. The reform in 

each state began with several rounds of formal hearings prior to establishing the laws in question. 

The process took between two and three years; therefore, identifying the specific year that captures 

the economic impact of the reform is challenging. To address this issue, we follow the assignment 

method proposed by Fabrizio et al. (2007), and for the reform implementation year we use the year 

of the formal hearing initiation in those states that passed restructuring legislation by the end of 

our sample period. As will be described in further detail in section 6.1, our parallel-trends test 

results confirm that plants began to alter their emissions activity as early as the hearings stage. 

Figure 1 shows the states that restructured their utility industry and the restructuring year. 

New York was the first state to begin the restructuring process in 1993, followed by eight 

additional states in 1994 and a further nine states in 1995. Two states and the District of Columbia 

restructured their utilities industries in 1996, and three additional states followed suit in 1997. 
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The economics literature points to high electricity prices as the main driver of a given 

state’s decision to restructure its electric utility industry (Joskow 1997, White 1996, Fabrizio et 

al., 2007; Sharabaroff et al. 2009). To test the validity of this argument within our sample, in Table 

2 we examine the determinants of states’ choice to restructure. To that end, we run a logit 

regression where the dependent variable is a dummy variable that equals one if the state 

restructured its utility industry between 1993–1999, and zero otherwise. The independent variables 

are electricity prices during the three-year period prior to the first restructuring initiation, as well 

as additional controls. 

The specification in Table 2 Column 1 confirms the conjecture that electricity prices are 

an important driver of restructuring in a state. To evaluate the extent to which electricity prices 

explain the restructuring decision, we re-estimate the regression using OLS and find the adjusted 

R-squared of 20% (unreported for the sake of brevity). In Table 2 Column 2 we also control for 

the fuel mix. Variations in endowments of fossil reserves across states may be related to a number 

of state-level economic factors, including the prices of fuel types and electricity, as well as 

employment in mining, oil refinery, transportation industries, etc. These factors, in turn, may play 

an additional role in the state’s restructuring decision. Empirically, we augment our estimation 

with the quantities of each of the fuel types used (measured in logs of their physical quantities). 

Because the total quantity of fuel used is significantly affected by state electricity consumption, 

we scale each fuel quantity variable by total electricity produced by all of our sample plants in a 

given state-year (measured in net MWh). The results indicate that the inclusion of fuel quantities 

improves the overall explanatory power of the regression, as measured by pseudo R-squared.  

However, neither of the fuel variables is statistically significant. Importantly, the negative coal 

quantity coefficient and the positive coefficient on gas indicate that the decision to restructure is 
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unlikely to be driven by high state-level pollution. In Table 2 Columns 3 and 4, we explore the 

potential role of pollution in a more direct way and include the state-level amount of emissions as 

another independent variable. Similar to the fuel quantities, we scale the emissions by MWh. We 

find that the level of SO2 has no significant explanatory power, and the price of electricity remains 

the only statistically significant variable. To summarize, our analysis of the restructuring 

determinants indicates that the reforms were driven primarily by high electricity prices and are 

unlikely to be triggered by the emissions levels in a given state.  

We do not expand our database beyond 1999 because several events occurred in the early 

2000s that complicated the restructuring process in certain states. Specifically, electricity prices in 

California skyrocketed in 2000–2001, due to market manipulation and the shortage of electricity. 

As a result, the state of California suspended its restructuring. Other states began debating whether 

to continue with the restructuring process, and five additional states (Oklahoma, Arkansas, New 

Mexico, Nevada, and Montana) postponed restructuring. Those developments contaminate our 

difference-in-differences setting in the post-1999 period. For example, it is not clear whether a 

state that began and then postponed restructuring following the California crisis should be assigned 

into a treated or control group. Also, a significant delay implementing already initiated 

restructuring processes undermines our assumption that the impact of the reform starts at the 

hearings stage; a delay further prevents identifying the true year of the reform for the treated states. 

Finally, it is not clear whether the states that did not initiate the restructuring process did so because 

they had originally decided against this policy or because they were waiting to see the resolution 

of the energy crisis for other states. Consequently, to ensure that we accurately capture the causal 

effect of competition on the outcomes of interest, we restrict our data to the years before 2000. 
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4. Results  

4.1 Empirical framework 

In the first set of tests, we establish the existence of each competition-driven efficiency 

channel. Electricity generation technology dictates the viable range of activities directed at 

improving efficiency at the plant level.  First, plants can cut abatement expenses, both in terms of 

ongoing labor and material expenses, and in terms of investment in pollution-reducing equipment. 

Second, plants can change the composition of the fuel used to generate a certain heat level. Third, 

increasing plant operation efficiency and optimizing existing controls can also achieve a reduction 

in emissions rate by reducing the overall amount of heat input needed for electricity generation. In 

the remainder of the section, we analyze the impact of restructuring on each of these mechanisms. 

Our baseline OLS regression tests the impact of a competition shock on each efficiency 

channel using difference-in-differences (DiD) framework. Our specification takes the following 

form: 

 

(1)  Efficiencyi,s,t= β1*Restructures,t + β2Scrubberi,s,t + β3PhaseIi,s,t  +αi +δt +εi,s,t 

 

where the dependent variable is the efficiency-driven action undertaken by plant i under the 

jurisdiction of state s, in year t.  Restructures,t is a dummy variable that equals one for every plant 

in a state that eventually passed the restructuring law, starting from the year of the first 

restructuring hearing and onward, and zero otherwise. We also include a set of control variables 

to capture technological and regulatory differences across plants that can subsequently have an 

effect on both plant efficiency and emissions levels.  The first variable, Scrubberi,s,t, is an indicator 

variable that takes on a value of one if the plant has at least one FGD unit in operation (operating 
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status “OP”) in a given year, and zero otherwise. The second variable, PhaseIi,s,t, is a dummy 

variable for whether the plant had at least one unit that was specifically required to participate in 

the Acid Rain program (i.e., belongs to “Table 1 Units”). As discussed in greater detail in Section 

2, beginning in 1995, the Acid Rain program imposed stringent requirements on a subset of the 

most polluting plants. About 6% of the plants in our sample were identified under the Act. 

In designing our empirical specifications, we assume that the variation in control variables 

and the technological differences are unlikely to be driven by the restructuring. The Clean Air Act 

of 1990, which flagged the facilities that would become subject to Phase I of the Acid Rain 

program, was passed several years prior to the first talks of deregulation. Similarly, we find that 

most of the variation in the Scrubber variable is driven by the years prior to restructuring hearings 

(unreported for the sake of brevity). Specifically, approximately 84% of the scrubbers in our 

sample were installed prior to 1993, which is the year the first state, New York, began formal 

restructuring hearings. Restructuring may have affected certain plants’ decisions to install 

scrubbers. We address this argument in the later part of our analysis. 

 In a variant of Specification 1, we also control for the overall level of production at the 

plant level, as measured by net electricity generation in MWh, converted into logs. Because 

efficiency is significantly  affected by the amount of output produced, a change in output following 

the restructuring could have been the driver of the results.  

Lastly, we include plant-epoch fixed effects (αi) and year fixed effects (δt). Including plant 

fixed-effect absorbs unique production characteristics of the plant as well as regional 

characteristics, such as demand for electricity, weather conditions, proximity to input factors, etc. 

We follow Fabrizio et al. (2007) and use plant-epoch, rather than just plant fixed effects as a more 

refined way to capture key production characteristics of a facility, as well as to neutralize the effect 
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of deregulation on plant-level capacity. Specifically, if the capacity of a plant changes by more 

than 15%, we consider it a new entity epoch. We also include time fixed effects to account for 

common industry factors such as production shocks driven by economic conditions, country-wide 

weather profile that could affect demand, etc. Standard errors are double clustered by year and 

plant-epoch. 

 

4.2 Efficiency Channels – Results 

4.2.1 Expenditure on pollution abatement 

We start by analyzing the effect of restructuring on investment in equipment to reduce 

pollution, as well as on expenses towards material and labor in order to reduce pollution. A plant 

can substantially reduce emissions by increased spending on emissions abatement. Specifically, 

plants may invest in control technology, such as scrubbers or fluidized bed combustion (FBC) 

boilers, or they can increase expenses on collection and disposal of byproducts.  

We first focus on capital expenditures. For the given reporting year, EIA requires plants to 

report all pollution abatement capital expenditures for new structures and/or equipment. We collect 

this information and examine the effect of restructuring on the level of investment in pollution 

abatement. The results reported in Table 3 Column 1 demonstrate that the level of capital 

expenditure among restructured utilities dropped measurably following restructuring: the average 

affected facility reduced its log investment in emissions 82%. In Table 3 Column 2 we refine the 

definition of investment by focusing on scrubbers. We estimate an OLS regression because our 

estimation includes plant-epoch fixed effects, and the logit estimation is not feasible in this type 

of setting. The results demonstrate that plants have not increased reliance on scrubbers following 

the reform. The only significant variable in this specification is the Phase I dummy, indicating that 
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installing scrubbers was one emissions-reduction method employed by facilities subject to the first 

stage of the acid rain program.  

Next, we look at pollution abatement expenses measured by expenditures on material and 

labor costs, as well as equipment operation and maintenance. In Table 3 Column 3 we consider 

abatement costs across all categories of chemicals, including ash, flue gas, and other potentially 

hazardous chemicals. In Table 3 Column 4 we consider only expenses associated with the 

collection and disposal of the sulfur byproducts. In both cases, we find that restructured plants cut 

their costs in these categories. 

It is possible that the results of a decline in emissions collection expenditures might have 

been driven by a shift from coal to less polluting fossil fuels following restructuring. Although we 

explore the effect of restructuring on fuel mix in greater detail below, we conclude this subsection 

by expanding the analysis of pollution abatement expenses to control for the amount of coal used 

in the electricity generation process. Table 3 Panel B shows that the reduction of air cleaning 

expenses is not attributed to the move from coal to cleaner fuel sources, and the impact of 

restructuring on abatement expenses remains negative and statistically significant.  

In panel C we show the specification in panel B, but this time we include only non-coal 

operating plants. Non-coal plants use either natural gas or petroleum to generate electricity.14 Since 

gas produces almost no SO2 pollution, we expect these plants to spend more on pollution abatement 

when they use petroleum. We control for fuel mix, we include the quantity of petroleum used to 

produce electricity. Consistent with the results in panel B, the results in this specification also show 

a reduction in both capital expenditure and abatement expenses following the restructuring.  

 

 
14 Since these plants do not use coal, they don’t have FGD, so we do not include dummy for scrubber here or use it 

as a control.  
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4.2.2 Fuel mix 

We next examine whether, subsequent to restructuring, plants switched to an 

environmentally friendly fuel.  

To examine whether plants have changed their fuel mix following the restructuring, we 

first estimate regressions where the dependent variable is the fraction of all the plant’s operating 

boilers (status “OP”) that rely on coal, gas, or petroleum as their primary fuel in a given year, as 

weighted by the number of hours under load of each boiler in that year. We present the results in 

Table 4 Panel A. We find the fraction of coal-fired boilers increased on average by 0.7% compared 

to nonaffected plants (Table 4 Column 1), and the fraction of gas-fired boilers increased on average 

by 3.4% (Table 4 Column 2). In contrast, the fraction of oil-fired units decreased by 4.3% (Table 

4 Column 3). We find similar results when we measure the use of coal, gas, and petroleum by the 

log of (one plus) the physical quantity of each fuel (Table 4 Columns 4–6).  

Although affected plants may have not changed the overall amount of coal used, they could 

have switched to less polluting coal types. To analyze this possibility, in Table 4 Panel B we look 

at the sulfur and ash content of the coal used as measured by the percentage amount of sulfur or 

ash reported times the amount of coal reported (in tons).  We add the value of one before converting 

each variable into logs. We find that plants switched to coal with higher sulfur content (Column 

1), and the results remain similar when we directly control for the amount of coal used. In Columns 

3 and 4 we also analyze the ash content of coal. Higher ash content indicates more residue after 

the coal is burned, which can be released to the atmosphere as particulate matter. We find that 

following the reform, affected plants saw an increase in ash content in coal, although the effect is 

not statistically different from zero. 
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As the next step of the analysis, we need to establish that the switch away from petroleum 

towards natural gas and coal is consistent with cost-minimizing incentives. To this end, every year 

we average the price paid by plants in our sample for each fuel category over the period 1985–

1999 and plot the resulting average prices in Figure 2. The figure shows that coal is the cheapest 

fuel throughout our sample period (145 cents/mmBTU), followed by natural gas (262 

cents/mmBTU), whereas petroleum, at 404 cents/mmBTU on average, is the most expensive. A 

switch from petroleum towards coal and natural gas can therefore be the outcome of a higher 

sensitivity to input prices in particular, and the shift to a less costly production process.   

To test more directly the extent to which fuel-changing actions may be driven by cost-

cutting considerations, we exploit a cross-sectional variation in plants’ incentives to become cost-

efficient. We hypothesize that the motive for switching to cheaper fuel will be stronger among 

those plants that, prior to restructuring, had especially high production costs. The opening of a 

state to competition would make these plants more vulnerable to losing their market share to out-

of-state producers of cheaper electricity, as well as to the potential entry of new incumbents. In 

response to the threat of entry, existing plants in areas with high operating costs should therefore 

have greater incentives to reduce production costs by switching to gas from petroleum. 

We look at state-level electricity prices to empirically determine which states had 

especially high production costs prior to restructuring. Absent restructuring, utility rates are 

established through a rate of return scheme: Electricity prices are set by regulators in a way that 

allows utilities to recover their return on investment and operating costs. The higher the cost of 

production, the higher the electricity cost of MWH set by the regulator. We therefore rank all states 

by electricity prices every year; states with the highest prices receive high ranks, and vice versa. 

We obtain annual state-level electricity prices from the EIA. We then identify states with notably 
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high production costs in a year prior to restructuring initiation. For each state, we compare its 

average electricity price levels a year before restructuring to the distribution of electricity prices 

in the rest of the states at the same time. The average ranking among states that were subject to 

restructuring throughout our sample period is 33.5 (where 50 is the highest and 1 is the lowest). 

This finding is consistent with our Section 2 findings showing that the key motive for restructuring 

was the high prices of electricity in a given state. For every state s, we then define a new time-

invariant variable, High Electricity Prices, which equals the difference between the state rank and 

33.5 whenever the state rank is higher than 33.5 one year before the restructuring, and zero 

otherwise. The intuition behind the variable construction is as follows: When electricity prices in 

a given state are above those of other restructured states, plants will have incentives to reduce 

costs, and the incentives will increase with the deviation of the state’s prices from the average in 

restructured states. However, when electricity prices in a given state are lower than average, we 

expect that plants operating in this state will keep their production function unchanged rather than 

increase costs. We interact our proxy of production costs, High Electricity Price, with restructuring 

indicator, and re-estimate the equations of input use. The higher the interaction term, the higher 

the production costs in a restructured state prior to the initiation of deregulation and the stronger 

the plants’ response through the cost-cutting channel.  

Table 5 Column 1 shows that overall fuel costs in plants were reduced in only those 

restructured states where production costs were high. The coefficient of −0.006 implies that an 

increase of 10 positions in state ranking relative to the median ranking of 33.5 is associated with a 

6% reduction in log fuel costs. This finding confirms the validity of the cost-cutting channel among 

the restructured plants. Next, in Table 5 Columns 2-4 we examine whether changes in fuel mix 

were the underlying mechanism. The results show that, among restructured plants, there was an 
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increase in the fraction of gas-fired boilers and a decrease in the percentage of oil-fired boilers. In 

both cases the change was statistically pronounced only in those states where production costs 

were high before the restructuring. The coefficients of 0.008 and −0.009 indicate that an increase 

in state ranking of 10 positions is associated with an 8% increase in the fraction of boilers operating 

primarily on gas and a 9% decrease in boilers operating primarily on petroleum. We obtain similar 

results when we examine the annual physical amount of coal, gas, and petroleum used across plants 

(Table 5 Columns 5-7). The coefficient of 0.09 for gas use (Table 5 Column 6) indicates that an 

increase in state ranking of 10 positions is associated with 90% increase in the log amount of gas 

and the coefficient of −0.047 in Table 5 Column 7 indicates a decrease of 47% for petroleum use. 

We also find a marginally significant increase in the use of coal after the restructuring (coefficient 

of 0.011). To summarize, our findings confirm the existence of a cost-cutting channel: Affected 

plants with higher cost-cutting incentives substituted the cheaper fuel type for the more expensive 

fuel type. 

 

4.2.3 Efficiency of operations 

Finally, we test whether the change in emissions rates may be driven by a more efficient 

production process. Plants may have improved fuel efficiency by generating the same amount of 

electricity with a smaller energy input. Plant production efficiency varies with the amount of 

electricity produced. Plants are often designed to generate base load electricity continuously at 

relatively high efficiency levels, and then cover peak load intermittently with less efficient units 

(Warwick, 2002). Higher efficiency can be achieved by avoiding peak load operation, as well as 

by running a plant continuously. Smaller improvements, such as changes to equipment 

maintenance practices, may also play a role.  
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 We start the analysis of efficiency by examining whether the heat input, measured in log 

units of heat (BTU), declined following the restructuring. Table 6 Column 1 demonstrates that, by 

controlling for the amount of generated electricity, an affected plant reduces its BTU input by 

approximately 1.2%. This finding implies an increase in electricity generating efficiency following 

restructuring.  

A primary reason for restructuring across states was the inability to meet peak electricity 

demands (Warwick, 2002). We should therefore expect plants prior to restructuring to have been 

subject to high loads and lower efficiency. Following restructuring many utilities started to 

compete for electricity across states, and several states initiated third-party power exchanges, in 

which electricity generators submitted bids to sell electricity.  Electric utilities operating at close 

to maximum capacity sustain higher costs and cannot compete with utilities that operate below full 

capacity. Because peak demands are not fully correlated with one another, electricity restructuring 

has the potential to improve production and efficiency. In addition, the entry of nonutility 

electricity suppliers further increases the supply of electricity and potentially reduces loads across 

existing utilities. 

To test whether utilities reduced their production after the restructuring, we examine plant-

level capacity factor in affected plants. To measure capacity factor, we scale total annual 

generation, Net MWh, by overall plant capacity (Gross MWh multiplied by 8,760 annual number 

of hours). We then estimate capacity factor as a function of deregulation and control variables.  

Consistent with the argument above, we find a decrease following restructuring of about 

2.4% in the capacity factor of plants in the restructured states (Table 6 Column 2). In Table 6 

Column 3 we use an alternative way to capture capacity and examine whether overall plant-level 

production has declined following restructuring. We find that the decline in the capacity factor 
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translates into a decrease of about 16.6% in the log amount of electricity produced over time by 

the utilities (Table 6 Column 3). 

To examine if the change in capacity led to the increase in efficiency, we add the capacity 

factor variable as an additional explanatory variable in Specification 1. After controlling for total 

production, we find a positive relation between capacity factor and BTU use, which indicates that 

a higher load is indeed associated with less efficient production. Moreover, once we introduce the 

capacity factor, the effect of restructuring on efficiency decreases by about 25% (from 1.2% to 

0.9%). This result means that the change in production output explains a substantial portion of the 

increase in efficiency. 

Overall, the findings of this subsection are consistent with production efficiency channel: 

plant production efficiency, as measured by the ratio between electricity output and heat input, 

increased in restructured states in comparison to plants in non-restructured states.  The findings 

regarding the capacity factor are also consistent with the argument of efficient allocation of 

resources: competition led to a reduction in the production of local plants with overcapacity in 

favor of incumbent competing plants.  

 

5. Emissions Policy and Restructuring 

After establishing all the efficiency channels through which PMC has affected the 

electricity production process, we turn to analyzing the impact of these channels on the 

environment. This is not a trivial step, since, as indicated earlier, efficiency channels could have 

either a positive or a negative impact on the environment. First, reduction in abatement expenses 

has a negative impact on environment, whereas the production efficiency channel and efficient 

allocation of resources - positive, so it is not clear what unique predictions we could obtain in this 
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case. Second, the incentives to alter fuel mix vary across plants depending on the available 

production technology, which can also generate opposite predictions regarding the impact of this 

specific channel on environment.   

To gauge the effect of the efficiency channels, triggered by changes in product market 

competition, on emission in an unambiguous way, we turn to a cross-sectional analysis. Our goal 

is to test the impact of restructuring on emission within subsamples of plants where we can 

precisely establish the impact of all the efficiency channels on emission.  Since the major source 

of differential predictions is the type of fuel used, we split the sample into a group of plants that 

have the capacity to use coal, and those that do not. Our hypothesis is as follows. The group of 

non-coal users should switch from petroleum to gas. This change in fuel mix should also reduce 

emission as a byproduct. Since abatement expenses are also less crucial for non-coal operating 

plants (for example, FGD equipment cannot be installed on a gas-operating plant), we therefore 

anticipate that the restructuring will have more positive overall impact on environment compared 

to the rest of the sample. At the same time, for the second group – coal-operating plants – we 

anticipate that the propensity to switch to coal will be the highest. The input mix channel will then 

have a negative impact on environmental policy, offsetting the benefits of other channels of 

efficiency. As a result, we expect the impact of PMC on emission to be less positive (more 

negative) among coal plants compared to non-coal operating plants. 

To test this idea empirically, we estimate our main specification using the natural logarithm 

of sulfur dioxide emission, as the dependent variable. The results on the impact of restructuring on 

emissions are presented in Table 7. In Table 7 Column 1, we find that the restructuring has a 

positive and statistically significant impact on emissions levels of coal-operating plants. At the 

same time, the impact of restructuring on non-coal operating plants is negative and also statistically 
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significant. These results are consistent with our hypothesis regarding the impact of efficiency 

channels on emission: plants in which the cost-cutting technology was also the environmentally 

friendly one, have experienced the largest improvement in their environmental policy. At the same 

time, plants that have switched to cheaper and post polluting input source, have become more 

polluting. 

To better understand the specific channels of efficiency that have shaped the differential 

response of coal and non-coal operating plants to restructuring, we include all the efficiency 

proxies in an alternative specification and present the results in columns (2) and (4), respectively. 

The results reveal several notable patterns. First, the inclusion of efficiency channel reduces the 

magnitudes of restructuring coefficients by 75%-90% and eliminates their statistical significance. 

These findings are consistent with the idea that the previously established efficiency channels are 

behind the relation between restructuring and emission levels. Second, among all the efficiency 

channels, the changes in fuel mix and the capacity factor are the ones with highest statistical 

significance. Specifically, the coefficient of sulfur content is positive and statistically significant 

in explaining emission of coal-operating plants (column 2), whereas petroleum quantity has a 

positive and significant impact on emission among gas-operating plants. Taken together, these 

findings indicate that cost-cutting consideration plays an important role and depends on the 

available technology. Thereby, the existence of cheaper and environmentally friendly production 

options can be critical to evaluate the impact of product market competition on environmental 

policy. Finally, capacity factor also plays an important role, as efficient allocation of production 

across competing plants has a positive impact on the environment. 
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6. Exploring Other Channels  

Although our evidence is consistent with efficiency considerations of plants affected by the 

restructuring, it is possible that other economic forces helped shape this decision. In this section 

we explore additional potential channels, which could also be consistent with efficiency and 

pollution patterns that we document in our data. These channels were offered by finance literature 

to explain a given firm’s choice to enhance their corporate social responsibility (CSR). We discuss 

the extent to which these channels could drive our findings. 

 

6.1 Omitted variables 

One concern regarding our results is that changes in plant efficiency may not be related to the 

restructuring, but to other possible shocks affecting both the competitive landscape and the 

pollution policy of the electricity generating industry. For example, a push towards newer 

electricity generation technologies in some states may have initiated both the restructuring process 

and the efficiency improvement.  

To address this concern, we perform two tests. First, we re-run the estimation of total electricity 

output, as measured by total MWh, while replacing the restructuring indicator variable with a 

vector of time dummies for years t−3 to t+3 relative to the first year of restructuring. If the 

restructuring increased competition by allowing plants from out-of-state and independent power 

producers to enter the market, we should expect to see significantly negative coefficients, but only 

from year t and onward. Moreover, we should see the effect occurring primarily among IOUs and 

not Munis, which were free to choose whether to comply with the restructuring or not, and among 

larger plants. We report the coefficients and their significance interval in Figure 3.  Panels A and 

B of Figure 3 confirm the validity of these predictions. The impact of time dummies on emissions 
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increases in magnitude and becomes statistically significant only after the restructuring (Panel A). 

At the same time, we observe no significant change in emissions among Muni plants around the 

restructuring (Panel B), further confirming the differential impact of the restructuring on plants of 

different ownership type.  

Second, we test whether the restructuring has impacted efficiency by forcing plants to use 

less input per unit of output produced. To this end, we estimate total heat input used, as measured 

by ln(BTU) as a function of total output and other control variables (Panels C and D). We find that 

while there is no pre-trend, the response of IOU and Munis has actually diverged following the 

restructuring: while IOUs have become more efficient and reduced the heat input, Munis, if 

anything, started to use more fuel input.  

To further establish the differential impact of the restructuring on IOU versus Muni plants, 

we re-estimate all of findings after splitting the restructuring indicator variable into 

Restructured*IOU and Restructured*Muni. The results, presented in the Appendix, indicate that 

restructuring only affected efficiency incentives and pollution policy of the IOU plants, whereas 

its impact on Muni plants is mixed and statistically insignificant. 

While our setting cannot rule out all alternative explanations, we believe these findings 

alleviate omitted variables concerns. 

 

6.2 Customer channel 

As mentioned in the introduction, customer differentiation channel does not play a 

significant role in the electric utilities setting. However, a fraction of the states had implemented 

retail access by the end of our sample period. At the wholesale level, the restructuring allowed all 

utilities in the state to compete for sales to wholesale distributors.  Retail access allowed retail 
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providers to compete for end users by either buying electricity through the exchange or by buying 

electricity directly from providers. To the extent that end users prefer providers that rely on less 

polluting energy, customer differentiation channel could have played a role.  

In addressing this question, it is important to note that although some states have given 

customers the freedom to choose their electricity provider by comparing different utilities, this is 

not a prevalent practice. Even today, almost 30 years since the beginning of first restructuring 

initiatives, only 13% of the US customers actively elect to purchase their electricity directly from 

their choice of energy suppliers.15  

Although the impact of retail restructuring was even smaller in our sample period, we wish 

to ensure that a potential impact of customer differentiation channel is not the driver of our results.  

To address this concern, we re-estimate our regressions of SO2 pollution after removing all 

plant-year observations where retail-level restructuring indicator equals one. This variable, 

obtained from the Fabrizio et al. (2007) dataset, takes a value of one starting from the year in which 

a state has implemented retail access, and zero otherwise. If retail access led to the use of less 

polluting fuels, we should expect the variable to be negative.  

The results, reported in Table 8, indicate that retail access does not play a role in our setting. 

First, it affects only around 1% of the observations in our sample. Second, after excluding these 

observations, we find that the impact of restructuring on emission remains statistically significant, 

and the coefficient magnitudes are similar to those obtained using the full sample. This finding 

indicates that product differentiation is unlikely to be the reason for different patterns in pollution 

across restructured plants.  

 

 
15 https://www.eia.gov/todayinenergy/detail.php?id=37452  
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6.3 Investor channel 

The pollution reduction we found may be driven by investors of public utilities interested 

in protecting the environment. Shareholder activism has increased in recent decades, and Dimson 

et al. (2015) and Naaraayanan et al. (2020) demonstrate that, aside from traditional activism, active 

owners engage target firms in socially responsible practices. Therefore, investors may have 

responded to restructuring by pushing firms to reduce pollution. We note that this channel, while 

consistent with our trend in emissions overall, cannot explain the cross-sectional variations found 

in our study. For example, we find that coal-based plants have increased their emissions levels, 

while gas-based plants have reduced emissions. Moreover, this argument relies on the assumption 

that investors would have had a hard time engaging firms in pollution-reduction activities before 

restructuring. Because restructuring has changed the electricity price setting mechanism by 

abandoning the cost-of-sale process through which utilities were essentially guaranteed a certain 

level of profits, the new system has created more risk. Therefore, we cannot conclusively posit 

why investors choose to compel the utility to increase expenses during the more vulnerable post-

restructuring period but did not do so when the utility was regulated, and less risk would have been 

involved.  

The investor channel can also be manifested through clientele effect, in which some 

investors prefer firms to be more protective of the environment than others. However, the clientele 

effect, if present, should generate the opposite pattern for the following reason. Regulated utilities 

attract long-term, dividend-loving investors (e.g., Brochet et al., 2012), who also tend to focus 

more heavily on environmental impact (Starks et al., 2017; Nguyen et al., 2020).  We should 

therefore expect a stronger push towards environmentally friendly policies before—rather than 

after—restructuring. We conclude that the investor channel is unlikely to drive our results. 
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6.4 Managerial entrenchment channel 

Past studies have shown that managers may attempt to become environmentally friendly 

because of nonpecuniary motives, and these actions are a manifestation of agency conflicts. For 

example, Chen et al. (2019) show that, consistent with the agency channel, the passage of 

shareholder-rights proposals leads to less environmentally friendly policies. Similarly, Masulis and 

Resa (2015) show that corporate philanthropy is a manifestation of agency conflicts that reduce 

firm value. If this is the case, then we should expect to find regulated plants more susceptible to 

agency conflicts. However, to the extent that product market competition spurs alignment of 

incentives (e.g., Hart, 1983; Schmidt, 1997; Chhaochharia et al., 2017), managers of less 

competitive industries are more likely to be involved in environmentally friendly policies. 

Therefore, our findings stand in contrast to the managerial entrenchment argument, as we find that 

managers of restructured utilities have decreased pollution. Our findings are instead consistent 

with the agency view that well-governed firms could engage more actively in CSR (Ferrell et al., 

2016). 

 

6.5 Legal channel 

Finally, we address the possibility that industry restructuring has led to greater legal 

uncertainty. Restructuring essentially involves changes in rulings that are yet to be challenged in 

a court of law. Moreover, other types of legislation, such as possible amendments to the Clean Air 

Act, could potentially interact with restructuring rules in ways not predicted by utilities. As a result, 

reducing environmental risk may be a value-enhancing strategy in such a setting. Consistent with 

this rationale, Sharfman and Fernando (2008) find that low environmental risk reduces firms’ cost 

of capital, and Fernando et al. (2017) and Koh et al. (2013) find that a decrease in environmental 
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risk enhances firm value. In addition, from a legal standpoint, behavioral benefits may accrue to 

environmentally friendly policy. For example, Hong et al. (2019) demonstrate that regulators act 

favorably towards environmentally friendly firms.   

If legal risk considerations are the effective channel, then we should expect an increase in 

environmentally friendly behavior in a restructured environment. However, the legal channel 

cannot explain the variation in our findings between plants that rely on coal, and those that do not. 

Table 7 demonstrates that coal-reliant plants have increased their pollution levels. Coal plants are 

likely to be subject to higher scrutiny by regulators because they are the most polluting agents 

across all categories of toxic emissions. Consistent with this notion, Phase I of the Acid Rain 

Program has deliberately targeted the largest polluters—old coal-operating plants—and required 

them to reduce pollution. We therefore conclude that the legal channel cannot be the driver of our 

findings. 

 

7. Conclusion 

In this paper we examine the impact of efficiency incentives, triggered by opening of 

markets to competition, on corporate environmental policy by focusing on the effect of electric 

utility restructuring – one of the most polluting industries in the world, including the U.S. Our 

empirical strategy takes advantage of a staggered passage of restructuring legislation in the electric 

utilities industry across the US during the 1990s. We find that plants in restructured states have 

increased incentives to become more efficient. 

We explore possible channels of increased efficiency and find that plants in restructured 

states have changed their fuel mix and begun to rely more heavily on clean gas as a source of 

energy. We find that the move to gas was driven by cost-cutting considerations. In addition, 

operation efficiency has increased, allowing plants to burn less fuel overall.  We also find that 
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despite the decline in pollution, affected plants have reduced abatement-related capital investment, 

as well as operations and management expenditures on pollution-reduction activities. These 

changes are also consistent with cost-cutting considerations.  

We rule out a number of other potential economic channels for these results, such as the 

role of customer preferences and product differentiation; investor clientele and activism; 

managerial entrenchment incentives; and legal motives. We find little evidence in support of any 

of these channels. 

 Although the study examines the relation between pollution and cost-cutting incentives in 

the 1990s, its implications are also relevant today. Sulfur dioxide and nitrogen oxide have 

decreased substantially since the 1990’s, yet electric utilities still remain the number one source of 

carbon dioxide pollution, responsible for global warming and climate change. Our findings show 

that cost-cutting incentives and efficient allocation of resources within plants and across plants can 

mitigate the environmental impact across all types of toxic pollutants. 

Our findings that cost-cutting incentives could lead to higher sustainability could be 

expanded to other industries and production processes. For example, cost-cutting considerations 

in industries where supply chain structure involve transportation of raw materials and final goods 

could lead to the establishments of distribution centers which reduce both transportation costs and 

emission. Similarly, smarter utilization of raw material in the production of final goods would 

enhance the bottom line while leading to less landfill waste. 

Our findings show also the potential benefits of product market competition on the 

environment. To the extent that product market consolidation in the US has increased in the last 

two decades, our findings may offer another channel through which industry consolidation affects 
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the environment. Consequently, we believe the findings of this project would interest both 

environmental and antitrust regulators. 
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Figure 1:  

Restructured States 

The figure depicts the U.S. map where restructured states are shaded. Each color corresponds to a specific restructuring 

year (see legend).  
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Figure 2: 

Average Fuel Prices Over Time 

The figure depicts average prices of coal, petroleum and gas, all in cents per million BTU, based on information 

reported in Form EIA-861 for plants in our sample. To aggregate the data across plants, for every fuel type and year 

we calculate the average of fuel prices, weighted by total MWh generated by each plant. To mitigate the impact of 

outliers, prices of each fuel type at the plant-year level are winsorized at 1% and 99% of their empirical distribution 

prior to averaging. 
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Figure 3: 

Parallel Trends 

 
This graph reports point estimates and 90% confidence intervals of panel regressions of total output, as measured by 

natural log of plant-level Net MWh, in Panels A and B; and natural log of plant-level heat energy used to generate 

electricity (in BTU) as a function of restructuring and other control variables in Panels C and D. The sample consists 

of all firms in the EPA-EIA- Fabrizio et al.  (2007) sample over the following years: 1985-1999. All regressions 

include also Phase I and Scrubber indicator variables, and regressions of heat energy also include control for natural 

log of plant-level Net MWh. IOU is an indicator variable which equals one if the plant belongs to an investor-owned 

utility firm. Muni is an indicator variable which equals one if the utility firm is owned by government, municipality, 

or members of a co-op. The regressions are estimated with an OLS model and include plant-epoch- and year-fixed 

effects.  Standard errors are double clustered by plant-epoch and year dimensions. The x-axis reports year relative to 

the restructuring year.  
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Panel A: Regression of MWh, IOU plants 

 

 
 

 
Panel B: Regression of MWh, Muni plants 
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Panel C: Regression of BTU, IOU plants 

 

 
 

 
Panel D: Regression of BTU, Muni plants 
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Table 1 

 Descriptive Statistics 

 

The table presents descriptive statistics for the merged EPA-EIA- Fabrizio et al. (2007) plant-year sample for the period of 1985–1999. Restructured is an indicator 

variable that takes on a value of one for every plant in a state that passed the restructuring legislation starting from the year of the first restructuring hearings and 

onward.  Net annual MWh measures the amount of electric energy produced, in Megawatt hour. Gross MW Capacity is the maximum electric power a plant can 

produce, in Megawatt. Installation year is the year when the oldest unit in the plant was installed. Heat input is the amount of heating energy used as an input in 

the generation of electricity and is measured in billions of British thermal units (BBTUs); Capacity factor is the ratio of total net energy produced by the plant to 

its maximal capacity (defined as Gross MW Capacity, multiplied by number of hours per year). IOU is an indicator variable which equals one if the plant belongs 

to an investor-owned utility firm. SO2 is the annual emission of sulfur dioxide, in tons. Scrubber is an indicator variable that equals 1 if the plant has at least one 

flue-gas desulfurization (FGD) system in operating status, and zero otherwise. Phase I is an indicator variable for whether the plant was subject to Phase I of the 

Acid Rain program. The indicator takes on the value of 1 for all affected plants starting from 1995 and onward, and zero otherwise. Abate. Capex measures all 

pollution abatement capital expenditures for new structures and/or equipment made during the reporting year, in thousand dollars. Abate. Costs cover all material 

and labor costs including equipment operation and maintenance costs (such as particulate collectors, conveyers, hoppers, etc.) associated with the collection and 

disposal of the byproducts, including fly and bottom ash collection, FGD collection, and other pollution collection. SO2 Costs variable covers the FGD expenses. 

Fuel quantities (Coal, Gas, and Petroleum) are total annual amount of each input used, measured in its respective units. %boilers with primary fuel – coal [gas, 

petroleum] measures the fraction of boilers in a given plant-year that use coal [gas, petroleum] as their primary fuel, weighted by each boiler’s total hours under 

load. 
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Table 1 (cont.) 

 

Variable Obs Mean Std. Dev. Min p25 Median p75 Max 

                  

Dummy (Restructured=1) 7,940 0.15  0.36  0  0  0  0  1  

                  

Plant Characteristics 

Total output (Net annual MWh) 7,940 3,447,705  3,726,115  886  819,218  2,167,528  4,691,988  22,000,000  

Gross Capacity (MW) 7,940 807  665  100  304.00  588.96  1,137.60  3,969  

Installation year 7,940 1962  12  1918  1953  1960  1972  1997  

Heat input (BBTU) 7,940 35,441  37,254  15  9,068  22,706  48,042  229,489  

Capacity factor 7,940 0.44  0.22  0.00  0.26  0.45  0.62  0.98  

Dummy (IOU=1) 7,940 0.80  0.40  0  1  1  1  1  

                  

Pollution and Abatement 

SO2 emission, ton 3,467 24,345  39,024  0  497  10,847  28,112  374,920  

Dummy (Phase I=1) 7,940 0.06  0.24  0  0  0  0  1  

Dummy (Scrubber=1) 7,940 0.16  0.37  0  0  0  0  1  

Abate. Capex, ($1,000) 7,810 731  6,139  0  0  0  117  304,014  

Abate. Costs, total ($1,000) 7,810 1,369  4,163  0  0  17  979  95,656  

SO2 Costs ($1,000) 7,810 643  2,810  0  0  0  149  56,236  

                  

Fuel Inputs 

Coal quant. ('000 short tons) 7,788 1,457  2,024  0  0  628  2,116  14,108  

Gas quant. ('000 cubic ft.) 7,788 4,509,418  11,000,000  0  0  8,300  2,780,975  107,000,000  

Petroleum quant. ('000 barrels) 7,788 282  1,009  0  1  9  44  13,617  

% boilers with primary fuel - coal 7,598 0.62  0.46  0.00  0.00  1.00  1.00  1.00  

% boilers with primary fuel - gas 7,598 0.27  0.43  0.00  0.00  0.00  0.67  1.00  

% boilers with primary fuel - petroleum 7,598 0.11  0.29  0.00  0.00  0.00  0.00  1.00  



52 
 

Table 2 

 Determinants of Restructuring 

 
This table reports estimates of logit regressions where the dependent variable is an indicator variable that takes on a 

value of one if the state has passed restructuring legislation at any point between 1993 and 1999. The sample in 

Specifications 1 and 2 consists of all plants in the EIA- Fabrizio et al. (2007) sample over the period of 1990-1992. 

The sample of the independent variables in specifications (3) and (4) consists of all plants in the EIA-EPA- Fabrizio 

et al. (2007) sample in 1990. Cents/KWh is annual state-level electricity prices.  Net annual MWh measures the 

aggregate amount of electric energy produced by all the plants in our sample at a given state-year, measured in 

Megawatt hour. SO2 is the annual emission of sulfur dioxide, in tons, aggregated across all plants in a given state-

year. Fuel quantities (Coal, Gas, and Petroleum) are the total annual amount of each input used, measured in its 

respective units, aggregated across all plants in a given state-year. Robust standard errors are reported in parentheses 

below coefficient estimates and are clustered by state in Specifications 1 and 2.  Significance at the 1%, 5%, and 10% 

level are indicated by ***, **, and *, respectively.  

 

 (1) (2) (3) (4) 

 1990-1992 1990-1992 1990 1990 

     

Cents/KWh 0.720** 0.645 1.064*** 0.669* 

 (0.313) (0.431) (0.317) (0.390) 

     

ln(SO2/Net MWh)   -0.668 -0.617 

   (0.506) (0.529) 

     

ln(Coal Quant./Net MWh)  -0.292  -0.252 

  (0.415)  (0.464) 

     

ln(Gas Quant./Net MWh)  0.053  0.038 

  (0.067)  (0.062) 

     

ln(Pet Quant./Net MWh)  0.274  0.302 

  (0.280)  (0.321) 

     

Intercept -4.684** -3.041 -10.136*** -5.830 

 (2.029) (7.303) (3.331) (7.939) 

N 141 138 46 46 

pseudo R2 0.166 0.299 0.233 0.299 

SE Clustered by State Yes Yes No No 
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Table 3 

Restructuring and Emission Cleaning Expenditure 

 
This table reports estimates of panel regressions of plant-level capital expenditures, as well as of operations and 

management costs associated with emission abatement, as a function of restructuring and control variables. The sample 

in Panel A consists of all plants in the EIA- Fabrizio et al. (2007) sample over the period of 1985–1999. The sample 

in Panel B is refined to include only plants with positive coal input in a given year. The sample in Panel C is refined 

to include only plants with zero coal input in a given year. All variables are as described in Table 1. Each dependent 

variable, except Scrubber indicator, is converted into natural logs (a value of one is added before the transformation). 

All regressions are estimated with an OLS model and include plant-epoch- and year-fixed effects.  Standard errors are 

double clustered by plant-epoch and year dimensions and are reported in parentheses below coefficient estimates.  

Significance at the 1%, 5%, and 10% level are indicated by ***, **, and *, respectively.   

Panel A: All Plants 

 (1) (2) (3) (4) 

 ln(Abate. 

CapEx) 

Dummy 

(Scrubber=1) 

ln(Abate. Costs, 

total) 

ln(SO2 Costs) 

Restructured -0.823*** -0.005 -0.436* -0.614** 

 (0.217) (0.010) (0.224) (0.232) 

     

ln(Net MWh) 0.216* 0.000 -0.009 0.225* 

 (0.116) (0.004) (0.111) (0.115) 

     

Dummy(Scrubber=1) 0.117  4.839*** 1.427** 

 (0.671)  (0.872) (0.540) 

     

Dummy(Phase I=1) -0.323 0.124*** -1.550*** 0.732* 

 (0.287) (0.033) (0.414) (0.348) 

     

Plant-Epoch FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

N 7810 7940 7810 7810 

adj.R2 0.42 0.95 0.76 0.59 

adj.R2 within 0.01 0.07 0.06 0.02 
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Panel B: Coal-Operating Plants 

 (1) (2) (3) (4) 

 ln(Abate. 

CapEx) 

Dummy 

(Scrubber=1) 

ln(Abate. Costs, 

total) 

ln(SO2 Costs) 

Restructured -0.791** -0.003 -0.619*** -0.588* 

 (0.280) (0.016) (0.199) (0.307) 

     

ln(Coal quant.) 0.195 0.003 -0.008 0.264 

 (0.203) (0.010) (0.167) (0.196) 

     

Dummy(Scrubber=1) 0.054  5.136*** 1.291** 

 (0.679)  (0.786) (0.545) 

     

Dummy(Phase I=1) -0.503 0.123*** -0.672** 0.488 

 (0.321) (0.034) (0.301) (0.364) 

     

Plant-Epoch FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

N 5169 5169 5169 5169 

adj.R2 0.35 0.94 0.79 0.54 

adj.R2 within 0.01 0.06 0.10 0.01 

 

Panel C: Non-coal Operating Plants 

 (1) (2) (3) 

 ln(Abate. 

CapEx) 

ln(Abate. 

Costs, total) 

ln(SO2 Costs) 

Restructured -0.620** -1.201** -0.191 

 (0.211) (0.406) (0.268) 

    

ln(Petroleum quant.) 0.122** 0.053 0.127** 

 (0.057) (0.050) (0.051) 

    

Dummy(Phase I=1) -1.280* -2.654** -1.887 

 (0.645) (1.212) (1.306) 

    

Plant-Epoch FE Yes Yes Yes 

Year FE Yes Yes Yes 

N 2618 2618 2618 

adj.R2 0.46 0.55 0.50 

adj.R2 within 0.02 0.05 0.02 
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Table 4 

Restructuring and Fuel Type 

 
This table reports estimates of panel regressions of plants’ reliance on different fuel types in the production process as a function of restructuring and control 

variables. The sample consists of all plants in the EIA- Fabrizio et al. (2007) sample over the period of 1985–1999, with the exception of Specifications 2 and 4 of 

Panel B, which rely on sample that includes only plants with positive coal input in a given year. ln(Sulf. Coal) is one plus the amount of sulfur in coal used for 

burning, in ton. ln(Ash) is one plus the amount of ash, produced in the process of coal burning, measured in the same way as the amount of sulfur. All the remaining 

variables are as described in Table 1. In Specifications 4-6 of Panel A and all specifications in Panel B the dependent variable is converted into natural logs (a value 

of one is added before the transformation). All regressions are estimated with an OLS model and include plant-epoch- and year-fixed effects.  Standard errors are 

double clustered by plant-epoch and year dimensions and are reported in parentheses below coefficient estimates.  Significance at the 1%, 5%, and 10% level are 

indicated by ***, **, and *, respectively.  

Panel A: Fuel Mix 

 (1) (2) (3) (4) (5) (6) 

 Prim. Coal Prim. Gas Prim. Petrol. ln(Coal 

Quant.) 

ln(Gas 

Quant.) 

ln(Pet. Quant.) 

Restructured 0.007* 0.032** -0.043*** 0.012 0.590** -0.415*** 

 (0.004) (0.013) (0.013) (0.030) (0.228) (0.104) 

       

ln(BTU) 0.003 0.002 -0.008 0.359*** 0.608*** 0.350*** 

 (0.002) (0.009) (0.009) (0.039) (0.124) (0.074) 

       

Dummy (Scrubber=1) -0.002 -0.006 0.008* 0.025 -0.191 -0.129 

 (0.005) (0.007) (0.004) (0.044) (0.494) (0.154) 

       

Dummy(Phase I=1) 0.000 -0.008 0.008 0.015 0.232 0.216* 

 (0.006) (0.007) (0.006) (0.027) (0.240) (0.112) 

       

Plant-Epoch FE Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes 

N 7598 7598 7598 7788 7788 7788 

adj.R2 0.99 0.94 0.88 0.99 0.94 0.86 

adj.R2 within 0.00 0.01 0.01 0.16 0.01 0.04 

 



56 
 

Panel B: Coal Quality 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 (1) (2) (3) (4) 

 ln(Sulf.Coal) ln(Sulf.Coal) ln(Ash) ln(Ash) 

Restructured 0.116** 0.142** 0.067 0.058 

 (0.044) (0.050) (0.046) (0.040) 

     

ln(Net MWh) 0.285***  0.323***  

 (0.034)  (0.040)  

     

ln(Coal Quant.)  0.808***  0.941*** 

  (0.040)  (0.020) 

     

Dummy(Scrubber=1) 0.417*** 0.410*** 0.137** 0.117*** 

 (0.097) (0.087) (0.052) (0.039) 

     

Dummy(Phase I=1) -0.451*** -0.444*** -0.085** -0.086** 

 (0.063) (0.067) (0.035) (0.031) 

     

Plant-Epoch FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

N 7788 5169 7788 5169 

adj.R2 0.99 0.94 0.99 0.95 

adj.R2 within 0.13 0.36 0.08 0.44 
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Table 5 

Restructuring, Production Costs, and Fuel Type 

 
This table reports estimates of panel regressions of plant reliance on different fuel types in the production process as a function of restructuring, state-level 

production costs, and control variables. The sample consists of all plants in the EIA- Fabrizio et al. (2007) sample over the period of 1985–1999. High Electr. Price 

is a proxy for high production costs at a state level and is constructed as described in Section 4.2. Fuel costs are the natural log of the total annual fuel expenses, in 

$1,000. All other variables are as described in Table 1. In Specifications 5-7 the dependent variable is converted into natural logs (a value of one is added before 

the transformation). All regressions are estimated with an OLS model and include plant-epoch- and year-fixed effects.  Standard errors are double clustered by 

plant-epoch and year dimensions and are reported in parentheses below coefficient estimates.  Significance at the 1%, 5%, and 10% level are indicated by ***, **, 

and *, respectively.   

 (1) (2) (3) (4) (5) (6) (7) 

 ln(Fuel 

Costs) 

%Prim. 

Coal 

%Prim. 

Gas 

%Prim. Pet ln(Quant. 

Coal) 

ln(Quant. 

Gas) 

ln(Quant. 

Pet) 

Restructured 0.012 0.006 -0.006 -0.001 -0.040 0.153 -0.190 

 (0.021) (0.004) (0.010) (0.010) (0.025) (0.257) (0.124) 
        

Restr.*High Electr. Price -0.006** 0.000 0.008** -0.009*** 0.011* 0.090* -0.047** 

 (0.003) (0.000) (0.003) (0.003) (0.006) (0.042) (0.020) 
        

ln(BTU) 0.849*** 0.003 0.008 -0.013 0.366*** 0.664*** 0.321*** 

 (0.016) (0.002) (0.008) (0.008) (0.041) (0.117) (0.077) 
        

Scrubber Dummy 0.015 -0.002 -0.009 0.012 0.021 -0.229 -0.109 

 (0.032) (0.005) (0.009) (0.008) (0.044) (0.495) (0.150) 
        

Phase I Dummy -0.061* 0.000 -0.009 0.009 0.015 0.229 0.218* 

 (0.029) (0.006) (0.007) (0.006) (0.027) (0.239) (0.114) 

Plant-Epoch FE Yes Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes Yes 

N 7937 7598 7598 7598 7788 7788 7788 

adj.R2 0.98 0.99 0.94 0.88 0.99 0.94 0.86 

adj.R2 within 0.71 0.00 0.02 0.03 0.16 0.02 0.04 



58 
 

Table 6 

Restructuring and Production Efficiency 

 
This table reports estimates of panel regressions of various measures of plant-level operation efficiency as a function 

of restructuring and control variables. The sample consists of all plants in the EIA- Fabrizio et al. (2007) sample over 

the period of 1985–1999. All variables are as described in Table 1. Each dependent variable, except Capacity Factor, 

is converted into natural logs. All regressions are estimated with an OLS model and include plant-epoch- and year-

fixed effects.  Standard errors are double clustered by plant-epoch and year dimensions and are reported in parentheses 

below coefficient estimates.  Significance at the 1%, 5%, and 10% level are indicated by ***, **, and *, respectively.   

 

 (1) (2) (3) (4) 

 ln(BTU) Capacity 

Factor 

ln(Net 

MWh) 

ln(BTU) 

Restructured -0.012** -0.056*** -0.166*** -0.009 

 (0.005) (0.010) (0.032) (0.006) 

     

Capacity Factor    0.151*** 

    (0.044) 

     

ln(Net MWh) 0.914***   0.885*** 

 (0.008)   (0.015) 

     

Dummy(Scrubber=1) 0.007 0.009 0.007 0.006 

 (0.007) (0.025) (0.061) (0.007) 

     

Dummy(Phase I=1) -0.002 -0.009 -0.053 -0.002 

 (0.005) (0.011) (0.036) (0.005) 

     

Plant-Epoch FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

N 7940 7940 7940 7940 

adj.R2 0.997 0.853 0.941 0.997 

adj.R2 within 0.947 0.026 0.015 0.948 
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Table 7 

Restructuring and Emissions by Fuel Capacity Groups 

 
This table reports estimates of panel regressions of plant-level SO2 emission amounts as a function of restructuring 

and other control variables. The sample consists of all firms in EPA-EIA- Fabrizio et al. (2007) sample over the 

following years: 1985, 1990, 1995–1999. The dependent variable is defined as one plus annual emission level of SO2 

(in ton), all converted into natural logs. Heat rate is the ratio of total heat input to net output (MMBTU/Net MWh). 
All other variables are as described in Table 1. Coal Plants are plants that have used a positive amount of coal input 

at least once throughout our sample period. Non-Coal Plants are plants that have used zero coal input throughout our 

sample period. Since Scrubber is not used in plants with no coal-based operation, and Sulfur is a feature of coal input 

only, the two variables are excluded in Specifications 3 and 4. The regressions are estimated with an OLS model and 

include plant-epoch- and year-fixed effects.  Standard errors are double clustered by plant-epoch and year dimensions 

and are reported in parentheses below coefficient estimates.  Significance at the 1%, 5%, and 10% level are indicated 

by ***, **, and *, respectively.   
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 (1) (2) (3) (4) 

 Coal Plants Coal Plants Non-Coal Plants Non-Coal Plants 

Restructured 0.179* 0.048 -0.716** -0.077 

 (0.081) (0.036) (0.213) (0.147) 

     

ln(Sulfur)  0.557**   

  (0.206)   

     

ln(Petroleum Quant.)  0.037  0.652*** 

  (0.031)  (0.044) 

     

ln(Heat Rate)  -0.038  -0.149 

  (0.393)  (0.231) 

     

Capacity Factor  0.974**  1.936*** 

  (0.356)  (0.369) 

     

ln(Abate. Expenses)  -0.004  0.024 

  (0.008)  (0.022) 

     

ln(Abate. Investment)  -0.002  -0.003 

  (0.003)  (0.013) 

     

ln(Net MWh) 0.886***  0.692***  

 (0.074)  (0.130)  

     

Dummy(Scrubber=1) -0.854*** -1.094***   

 (0.199) (0.232)   

     

Dummy(Phase I=1) -0.554*** -0.305* 0.245 -0.260 

 (0.059) (0.130) (0.342) (0.379) 

Plant-Epoch FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

N 2317 2315 1116 1111 

adj.R2 0.92 0.94 0.87 0.93 

adj.R2 within 0.35 0.48 0.12 0.52 
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Table 8 

Restructuring, Retail Access and Emissions – excl. Retail 

 
This table reports estimates of panel regressions of plant-level SO2 emission amounts as a function of restructuring 

and other control variables. The sample consists of all firms in EPA-EIA- Fabrizio et al. (2007) sample over the 

following years: 1985, 1990, 1995–1999, excluding cases where the state has implemented retail access (that is, we 

remove all plant-year observations where Retail  - an indicator variable that takes on a value of one starting from the 

year in which a state has implemented retail access - equals one). The dependent variable is defined as one plus annual 

emission level of SO2 (in ton), all converted into natural logs. All other variables are as described in Table 1. Coal 

Plants are plants that have used a positive amount of coal input at least once throughout our sample period. Non-Coal 

Plants are plants that have used zero coal input throughout our sample period. Since Scrubber is not used in plants 

with no coal-based operation, and Sulfur is a feature of coal input only, the two variables are excluded in Specifications 

3 and 4. The regressions are estimated with an OLS model and include plant-epoch- and year-fixed effects.  Standard 

errors are double clustered by plant-epoch and year dimensions and are reported in parentheses below coefficient 

estimates.  Significance at the 1%, 5%, and 10% level are indicated by ***, **, and *, respectively.   
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 (1) (2) (3) (4) 

 Coal 

Plants 

Coal 

Plants 

Non-Coal 

Plants 

Non-Coal 

Plants 

Restructured 0.177* 0.051 -0.727** -0.075 

 (0.079) (0.035) (0.215) (0.154) 

     

ln(Sulfur)  0.552**   

  (0.209)   

     

ln(Petroleum Quant.)  0.037  0.648*** 

  (0.030)  (0.046) 

     

ln(Heat rate)  -0.038  -0.073 

  (0.392)  (0.238) 

     

Capacity Factor  1.039**  2.115*** 

  (0.372)  (0.439) 

     

ln(Abate. Expenses)  -0.004  0.024 

  (0.008)  (0.021) 

     

ln(Abate. Investment)  -0.001  -0.002 

  (0.003)  (0.013) 

     

ln(Net MWh) 0.913***  0.699***  

 (0.073)  (0.144)  

     

Dummy(Scrubber=1) -0.832*** -1.064***   

 (0.208) (0.246)   

     

Dummy(Phase I=1) -0.558*** -0.313* 0.252 -0.235 

 (0.060) (0.132) (0.339) (0.396) 

Plant-Epoch FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

N 2290 2288 1077 1072 

adj.R2 0.92 0.94 0.87 0.93 

adj.R2 within 0.35 0.48 0.12 0.51 
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Appendix  

Table Appendix A-1 

Restructuring and Emission Cleaning Expenditure 

 
This table reports estimates of panel regressions of plant-level capital expenditures, as well as of operations and 

management costs associated with emission abatement, as a function of restructuring and control variables. The sample 

in Panel A consists of all plants in the EIA- Fabrizio et al. (2007) sample over the period of 1985–1999. The sample 

in Panel B is refined to include only plants with positive coal input in a given year. The sample in Panel C is refined 

to include only plants with zero coal input in a given year. All variables are as described in Table 1. Each dependent 

variable, except Scrubber indicator, is converted into natural logs (a value of one is added before the transformation). 

All regressions are estimated with an OLS model and include plant-epoch- and year-fixed effects.  Standard errors are 

double clustered by plant-epoch and year dimensions and are reported in parentheses below coefficient estimates.  

Significance at the 1%, 5%, and 10% level are indicated by ***, **, and *, respectively.   

Panel A: All Plants 

 (1) (2) (3) (4) 

 ln(Abate. 

CapEx) 

Dummy 

(Scrubber=1) 

ln(Abate. 

Costs, Total) 

ln(SO2 costs) 

Restructured*IOU -0.935*** -0.007 -0.648** -0.635** 

 (0.228) (0.010) (0.239) (0.238) 

     

Restructured*Muni -0.054 0.009 1.005** -0.470 

 (0.495) (0.020) (0.356) (0.454) 

     

ln(Net MWh) 0.221* 0.001 0.001 0.226* 

 (0.116) (0.004) (0.109) (0.115) 

     

Dummy (Scrubber=1) 0.093  4.793*** 1.422** 

 (0.673)  (0.873) (0.537) 

     

Dummy(Phase I=1) -0.279 0.125*** -1.468*** 0.740* 

 (0.287) (0.033) (0.411) (0.351) 

     

Plant-Epoch FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

N 7810 7940 7810 7810 

adj.R2 0.42 0.95 0.76 0.59 

adj.R2 within 0.01 0.07 0.07 0.02 
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Panel B: Coal-Operating Plants 

 (1) (2) (3) (4) 

 ln(Abate. 

CapEx) 

Dummy 

(Scrubber

=1) 

ln(Abate. 

Costs, total) 

ln(So2 

Costs) 

Restructured*IOU -0.951*** -0.007 -0.855*** -0.627* 

 (0.294) (0.017) (0.195) (0.323) 

     

Restructured*Muni 0.529 0.029 1.334** -0.260 

 (0.772) (0.042) (0.487) (0.683) 

     

ln(Coal quant.) 0.216 0.003 0.023 0.270 

 (0.203) (0.010) (0.163) (0.197) 

     

Dummy (Scrubber=1) 0.012  5.074*** 1.280** 

 (0.683)  (0.788) (0.539) 

     

Dummy(Phase I=1) -0.435 0.124*** -0.570* 0.505 

 (0.321) (0.034) (0.298) (0.369) 

     

Plant-Epoch FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

N 5169 5169 5169 5169 

adj.R2 0.35 0.94 0.79 0.54 

adj.R2 within 0.01 0.06 0.12 0.01 
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Panel C: Non-Coal-Operating Plants 

 (1) (2) (3) 

 ln(Abate. 

CapEx) 

ln(Abate. Costs, 

total) 

ln(SO2 Costs) 

Restructured*IOU -0.676** -1.347*** -0.193 

 (0.231) (0.424) (0.274) 

    

Restructured*Muni -0.330 -0.436 -0.184 

 (0.457) (0.562) (0.497) 

    

ln(Petroleum quant.) 0.122* 0.053 0.127** 

 (0.057) (0.051) (0.051) 

    

Dummy(Phase I=1) -1.235* -2.536* -1.886 

 (0.641) (1.202) (1.304) 

    

Plant-Epoch FE Yes Yes Yes 

Year FE Yes Yes Yes 

N 2618 2618 2618 

adj.R2 0.46 0.55 0.50 

adj.R2 within 0.02 0.06 0.02 
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Table Appendix A-2 

Restructuring and Fuel Type 
This table reports estimates of panel regressions of plants’ reliance on different fuel types in the production process as a function of restructuring and control 

variables. The sample consists of all plants in the EIA- Fabrizio et al. (2007) sample over the period of 1985–1999, with the exception of Specifications 2 and 4 of 

Panel B, which rely on sample that includes only plants with positive coal input in a given year. ln(Sulf. Coal) is one plus the amount of sulfur in coal used for 

burning, in ton. ln(Ash) is one plus the amount of ash, produced in the process of coal burning, measured in the same way as the amount of sulfur. All the remaining 

variables are as described in Table 1. In Specifications 4-6 of Panel A and all specifications in Panel B the dependent variable is converted into natural logs (a value 

of one is added before the transformation). All regressions are estimated with an OLS model and include plant-epoch- and year-fixed effects.  Standard errors are 

double clustered by plant-epoch and year dimensions and are reported in parentheses below coefficient estimates.  Significance at the 1%, 5%, and 10% level are 

indicated by ***, **, and *, respectively.  

Panel A: Fuel Mix 

 (1) (2) (3) (4) (5) (6) 

 Prim. Coal Prim. Gas Prim. Petrol. ln(Coal Quant.) ln(Gas Quant.) ln(Pet. Quant.) 

Restructured*IOU 0.008* 0.039*** -0.047*** 0.019 0.695** -0.404*** 

 (0.004) (0.013) (0.014) (0.032) (0.255) (0.100) 

       

Restructured*Muni 0.002 -0.017 -0.013 -0.032 -0.126 -0.493 

 (0.004) (0.030) (0.011) (0.039) (0.164) (0.284) 

       

ln(BTU) 0.003 0.002 -0.007 0.359*** 0.603*** 0.350*** 

 (0.002) (0.009) (0.009) (0.039) (0.124) (0.074) 

       

Dummy (Scrubber=1) -0.001 -0.004 0.007 0.027 -0.168 -0.126 

 (0.005) (0.007) (0.004) (0.044) (0.496) (0.155) 

       

Dummy(Phase I=1) 0.000 -0.011 0.010 0.013 0.192 0.211* 

 (0.006) (0.007) (0.006) (0.027) (0.241) (0.111) 

       

Plant-Epoch FE Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes 

N 7598 7598 7598 7788 7788 7788 

adj.R2 0.99 0.94 0.88 0.99 0.94 0.86 

adj.R2 within 0.00 0.01 0.01 0.16 0.02 0.04 
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Panel B: Coal Quality 

 (1) (2) (3) (4) 

 ln(Sulf.) ln(Sulf.) ln(Ash) ln(Ash) 

Restructured*IOU 0.102** 0.136** 0.053 0.053 

 (0.038) (0.047) (0.040) (0.035) 

     

Restructured*Muni 0.030 0.065 -0.004 0.035 

 (0.049) (0.065) (0.048) (0.059) 

     

ln(Net MWh) 0.262***  0.310***  

 (0.030)  (0.036)  

     

ln(Coal Quant.)  0.751***  0.932*** 

  (0.040)  (0.019) 

     

Dummy(Scrubber=1) 0.414*** 0.409*** 0.137** 0.117*** 

 (0.097) (0.087) (0.052) (0.039) 

     

Dummy(Phase I=1) -0.458*** -0.450*** -0.096** -0.091*** 

 (0.062) (0.066) (0.032) (0.029) 

     

Plant-Epoch FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

N 7788 5169 7788 5169 

adj.R2 0.99 0.95 0.99 0.96 

adj.R2 within 0.16 0.38 0.11 0.52 
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Table Appendix A-3 

Restructuring, Production Costs, and Fuel Type 
This table reports estimates of panel regressions of plant reliance on different fuel types in the production process as a function of restructuring, state-level production costs, and control 

variables. The sample consists of all plants in the EIA- Fabrizio et al. (2007) sample over the period of 1985–1999. High Electr. Price is a proxy for high production costs at a state level 

and is constructed as described in Section 4.2. Since High Electr. Price*IOU is a time-invariant variable, it is not included. Fuel costs are the natural log of the total annual fuel expenses, 

in $1,000. All other variables are as described in Table 1. In Specifications 5-7 the dependent variable is converted into natural logs (a value of one is added before the transformation). 

All regressions are estimated with an OLS model and include plant-epoch- and year-fixed effects.  Standard errors are double clustered by plant-epoch and year dimensions and are reported 

in parentheses below coefficient estimates.  Significance at the 1%, 5%, and 10% level are indicated by ***, **, and *, respectively.   

 (1) (2) (3) (4) (5) (6) (7) 

 ln(Fuel Costs) %Prim. Coal %Prim. Gas %Prim. Pet ln(Quant.Coal) ln(Quant.Gas) ln(Quant.Pet) 

Restructured*IOU 0.010 0.006 -0.003 -0.002 -0.037 0.200 -0.209 

 (0.022) (0.005) (0.010) (0.010) (0.026) (0.285) (0.122) 

        

Restructured*Muni 0.022 0.007* -0.009 0.002 -0.051 -0.050 -0.013 

 (0.043) (0.003) (0.011) (0.009) (0.043) (0.192) (0.263) 

        

Restr.*High Electr. Price*IOU -0.006* 0.000 0.009*** -0.009*** 0.011* 0.101** -0.040* 

 (0.003) (0.000) (0.003) (0.003) (0.006) (0.046) (0.020) 

        

Restr.*High Electr. Price*Muni -0.003 -0.001 -0.002 -0.003 0.004 -0.024 -0.111 

 (0.007) (0.001) (0.008) (0.003) (0.010) (0.028) (0.067) 

        

ln(BTU) 0.850*** 0.003 0.007 -0.013 0.365*** 0.653*** 0.317*** 

 (0.016) (0.002) (0.008) (0.008) (0.040) (0.117) (0.077) 

        

Scrubber Dummy 0.014 -0.001 -0.007 0.011 0.022 -0.198 -0.101 

 (0.031) (0.005) (0.010) (0.008) (0.044) (0.496) (0.152) 

        

Phase I Dummy -0.059* 0.000 -0.012 0.011 0.012 0.183 0.208* 

 (0.029) (0.006) (0.007) (0.006) (0.027) (0.239) (0.112) 

Plant-Epoch FE Yes Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes Yes 

N 7937 7598 7598 7598 7788 7788 7788 

adj.R2 0.98 0.99 0.94 0.88 0.99 0.94 0.86 

adj.R2 within 0.71 0.00 0.03 0.04 0.16 0.02 0.05 
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Table Appendix - 4 

Restructuring and Production Efficiency 

 
This table reports estimates of panel regressions of various measures of plant-level operation efficiency as a function 

of restructuring and control variables. The sample consists of all plants in the EIA- Fabrizio et al. (2007) sample over 

the period of 1985–1999. All variables are as described in Table 1. Each dependent variable, except Capacity Factor, 

is converted into natural logs. All regressions are estimated with an OLS model and include plant-epoch- and year-

fixed effects.  Standard errors are double clustered by plant-epoch and year dimensions and are reported in parentheses 

below coefficient estimates.  Significance at the 1%, 5%, and 10% level are indicated by ***, **, and *, respectively.   

 

 (1) (2) (3) (4) 

 ln(BTU) Capacity Factor ln(Net MWh) ln(BTU) 

Restructured*IOU -0.013** -0.056*** -0.157*** -0.009* 

 (0.005) (0.011) (0.032) (0.005) 

     

Restructured*Muni -0.008 -0.057*** -0.225*** -0.006 

 (0.025) (0.015) (0.068) (0.025) 

     

Capacity Factor    0.151*** 

    (0.044) 

     

ln(Net MWh) 0.914***   0.885*** 

 (0.008)   (0.015) 

     

Dummy (Scrubber=1) 0.007 0.009 0.009 0.006 

 (0.007) (0.025) (0.060) (0.007) 

     

Dummy(Phase I=1) -0.001 -0.009 -0.057 -0.002 

 (0.005) (0.011) (0.036) (0.005) 

     

Plant-Epoch FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

N 7940 7940 7940 7940 

adj.R2 0.997 0.853 0.941 0.997 

adj.R2 within 0.947 0.026 0.015 0.948 
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Table Appendix A-5 

Restructuring and Emissions by Fuel Capacity Groups 

 
This table reports estimates of panel regressions of plant-level SO2 emission amounts as a function of restructuring 

and other control variables. The sample consists of all firms in EPA-EIA- Fabrizio et al. (2007) sample over the 

following years: 1985, 1990, 1995–1999. The dependent variable is defined as one plus annual emission level of SO2 

(in ton), all converted into natural logs. All other variables are as described in Table 1. Coal Plants are plants that 

have used a positive amount of coal input at least once throughout our sample period. Non-Coal Plants are plants that 

have used zero coal input throughout our sample period. Since Scrubber is not used in plants with no coal-based 

operation, and Sulfur is a feature of coal input only, the two variables are excluded in Specifications 3 and 4. The 

regressions are estimated with an OLS model and include plant-epoch- and year-fixed effects.  Standard errors are 

double clustered by plant-epoch and year dimensions and are reported in parentheses below coefficient estimates.  

Significance at the 1%, 5%, and 10% level are indicated by ***, **, and *, respectively. 
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 (1) (2) (3) (4) 

 Coal Plants Coal Plants Non-Coal 

Plants 

Non-Coal 

Plants 

Restructured*IOU 0.187* 0.047 -0.770** -0.097 

 (0.088) (0.040) (0.232) (0.162) 

     

Restructured*Muni 0.115 0.060 -0.434 0.017 

 (0.117) (0.106) (0.297) (0.149) 

     

ln(Sulfur)  0.557**   

  (0.206)   

     

ln(Petroleum Quant.)  0.037  0.652*** 

  (0.031)  (0.044) 

     

ln(Heat rate)  -0.037  -0.162 

  (0.390)  (0.227) 

     

Capacity Factor  0.974**  1.926*** 

  (0.358)  (0.366) 

     

ln(Abate. Expenses)  -0.004  0.023 

  (0.008)  (0.022) 

     

ln(Abate. Investment)  -0.002  -0.002 

  (0.002)  (0.014) 

     

ln(Net MWh) 0.885***  0.693***  

 (0.074)  (0.126)  

     

Dummy(Scrubber=1) -0.852*** -1.094***   

 (0.200) (0.231)   

     

Dummy(Phase I=1) -0.557*** -0.304* 0.299 -0.245 

 (0.059) (0.129) (0.392) (0.415) 

Plant-Epoch FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

N 2317 2315 1116 1111 

adj.R2 0.92 0.94 0.87 0.93 

adj.R2 within 0.35 0.48 0.12 0.52 
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Table Appendix A-6 

Restructuring, Retail Access and Emissions – excl. Retail 

 
This table reports estimates of panel regressions of plant-level SO2 emission amounts as a function of restructuring 

and other control variables. The sample consists of all firms in EPA-EIA- Fabrizio et al. (2007) sample over the 

following years: 1985, 1990, 1995–1999, excluding cases where the state has implemented retail access (that is, we 

remove all plant-year observations where Retail  - an indicator variable that takes on a value of one starting from the 

year in which a state has implemented retail access - equals one). The dependent variable is defined as one plus annual 

emission level of SO2 (in ton), all converted into natural logs. All other variables are as described in Table 1. Coal 

Plants are plants that have used a positive amount of coal input at least once throughout our sample period. Non-Coal 

Plants are plants that have used zero coal input throughout our sample period. Since Scrubber is not used in plants 

with no coal-based operation, and Sulfur is a feature of coal input only, the two variables are excluded in Specifications 

3 and 4. The regressions are estimated with an OLS model and include plant-epoch- and year-fixed effects.  Standard 

errors are double clustered by plant-epoch and year dimensions and are reported in parentheses below coefficient 

estimates.  Significance at the 1%, 5%, and 10% level are indicated by ***, **, and *, respectively.   
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 (1) (2) (3) (4) 

 Coal 

Plants 

Coal 

Plants 

Non-Coal 

Plants 

Non-Coal 

Plants 

Restructured*IOU 0.183* 0.047 -0.778** -0.084 

 (0.085) (0.039) (0.237) (0.163) 

     

Restructured*Muni 0.133 0.079 -0.458 -0.031 

 (0.122) (0.110) (0.292) (0.181) 

     

ln(Sulfur)  0.552**  0.000 

  (0.209)  (0.000) 

     

ln(Petroleum Quant.)  0.037  0.648*** 

  (0.030)  (0.046) 

     

ln(Heat rate)  -0.037  -0.081 

  (0.390)  (0.231) 

     

Capacity Factor  1.038**  2.109*** 

  (0.373)  (0.432) 

     

ln(Abate. Expenses)  -0.005  0.023 

  (0.008)  (0.021) 

     

ln(Abate. Investment)  -0.001  -0.002 

  (0.002)  (0.013) 

     

ln(Net MWh) 0.912***  0.699***  

 (0.073)  (0.139)  

     

Dummy(Scrubber=1) -0.831*** -1.062*** 0.000 0.000 

 (0.209) (0.245) (0.000) (0.000) 

     

Dummy(Phase I=1) -0.560*** -0.312* 0.303 -0.229 

 (0.060) (0.131) (0.393) (0.427) 

Plant-Epoch FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

N 2290 2288 1077 1072 

adj.R2 0.92 0.94 0.87 0.93 

adj.R2 within 0.35 0.48 0.12 0.51 
 

 

 


